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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT ~4~

U.S. customary (non-SI) units of measurement used in this report can be

converted to metric (SI) units as follows:

Multiply ByTo Obtain

feet 3.048 metres

inches 2.54 centimetres

kip (force)-ft 1355.818 newton-metres

kips (force) 4.448222 kilonewtons

kips (force) per square inch 6.894757 megapascals

kip-inches 112.9848 newton-metres

.. 'I.%

3



FOUNDATION INTERACTION PROBLEMS INVOLVING AN ELASTIC HALF-PLANE

PART I: INTRODUCTION

Background

1. Stress analysis problems involving interaction between a structure

and its foundation often lead to extensive computational effort. This fact
becomes obvious when finite-element methods are used to study problems where

the foundation is idealized as an infinite elastic half-plane. Attempts to

represent the half-plane by a finite size structure using many elements entail

solving large systems of simultaneous equations at a considerable computa-

tional cost.

Purpose

2. This report presents a more computationally efficient procedure

which employs the exact solution of the equations of elasticity for an elastic

half-plane subjected to arbitrary surface loading. Complex variable for-

mulations are shown to yield a compact solution for the stresses and displace-

ments in a half-plane supporting several concentrated loads.

3. This solution is also employed to compute flexibility and stiffness

matrices relating the concentrated loads and the displacements at the points

or application of the loads. The stiffness matrix derived in this manner is

then employed to investigate a simple type of interaction problem where an
-uler beam rests on an elastic half-plane and is subjected to external load-

ing. The foundation interaction forces, as well as other quantities such as

"*,eam shear and moment, are also computed.

4



PART II: TWO-DIMENSIONAL ELASTOSTATIC PROBLEMS

Significant Effects ". "

4. A brief summary of the various field quantities Important in the

two-dimensional infinitesimal deformation theory of linear elasticity is pre-

sented below. The stress state is represented by two extensional stresses

and T and a shear stress T * Hooke's law states that thexx yy xy

stresses depend linearly on the extensional strains E and E and thexx yy

shear strain E Furthermore, the strains are functions of the first
xy

derivatives of the displacements u (in the x-direction) and v (in the

y-direction). The governing differential relations are

xx =x yy y ' xy 2 7x,

5. Hook's law for a homogeneous, isotrophic material contains three

elastic constants which are Young's modulus, E , Poisson's ratio, o , and

the shear modulus, C Only two of these are independent because

[2(1 + .)]

Since a two-dimensional elasticity problem is a special case of a more general

threc-dimensional configuration, it is instructive to examine the restriction

Involved in the two-dimensional specialization. In three dimensions we have

t ,ceider the following quantities, each of which depends on spatial coordi-

!.!Ie.,s x , y , and z

a. Three displacements u , v , w

b. Six stresses T T T T T y 1 y '
x x yy zz xy yz Zx

c. Six strains x , y z '
xx yy zz xy z zx

S S. P. Timoshenko and J. N. Goodier. 1970. Theorv of Elasticity, 3d ed.,

McGraw-Hill, New York.

9•%
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Subclasses--Plane Strain and Stress

2 ~ -. The main subclasses of two-dimensional problems, plane strain and
;tress, are mathematically similar. A state of plane strain exists when

displacement w (in the z-direction) vanishes and the displacements u ..-

-' md v are functions of x and y only. it is then found that for plane

E =C E =0

yz zx zz

>te.x& T I , and T I related to strains C ,x C , and Ex

rding to

2G F N (1 - )!? -x T 2C £ = (I -(7)T T Ixx yy yy yy x

xy xy

Ut:-ess state referred to as plane stress occurs when all field quantities

iTIJd:erendit Of z and

xz yz zz

-CT(T + T
0xx vY

xz yz zz E

~ nonzeo field quantities ~ 1 1 ,£ C ,n .
nozrxx yy xy xx vy adi

i m -elated "or the case of plane stress by

T - CT

2G ~ =

I -I0+

2G F- - Y x
yy 1+0 p

2GC T
xy xy

6



7 .- ."

7. Because the equations arising in plane strain and plane stress are

very similar, they can be solved by the same mathematical procedures. It is

convenient to use as fundamental elastic constants the shear modulus G and
-. -. o.-

another parameter K

where

K 3 -4a

for plane strain and

3-1 + O "y-

for plane stress. Then the stress-strain formulas for both situations turn

out to be

T + (K- 3)(T + )
26 xx xx yy

xx 4

T + (K- 3)(T + )
2 -C yy xx Yy

yy 4

2G E: T

xy xy

Although the constant K does not have an obvious physical significance com-

7 irahe to that of C , it is, nevertheless, much more convenient to use in a

.'-rie~v of formulas needed in the work which follows.

Boundary Value Problems

8. Solving a boundarv value problem in plane elasticity entails deter-

-nn the stresses ' yy , and T and the displacements u and v

-ii: rc'uit from given boundary conditions. The first fundamental type

',im involves the case where surface traction components T and T are
x v

,:c. These tractions depend on the boundary values of stress according to

7
A



T T V + T V
x xx x xy y

T =T + yVy xy x y y h'l%

with v and v being the x and y components of the outward directedx y

unit surface normal. Assuming that the boundary tractions comply to self-

equilibrating loads, the stresses throughout the body are determined uniquely

and the displacements are determined within a rigid body displacement of the

form

u =u 0 -a 0 y , v =v 0 + a 0x

where u0  and v are translation components and a is an angle of rota-

tion. The arbitrary parameters u0 , v0 , and a can be fixed by speci- - -

fying the displacement of a selected point and the direction of one line

segment through the point.

9. Two other types of problems also merit interest. In the second

fundamental type boundary value problem, displacements are known overall on

the boundary. Then, the stresses and displacements will be uniquely deter-

mined throughout the body. A third, and more difficult, type problem involves

so-called mixed boundary conditions where tractions are known on one boundary

part and displacement conditions are known on another. The mixed problem is

not studied here extensively. However, one important mixed problem which is

dealt with to some extent involves a half-plane having zero load on one part

with displacement conditions relating to an Euler beam supported by the half-

plane. To analyze this problem, developments are presented in the following

paragraphs relating to a half-plane under general loading and an Euler beam

under general loadings.

Complex Variable Formulation

10. The stresses and displacements in a two-dimensional linear elasto-

static problem can be expressed in terms of two analytic functions '(z) and

, (7) and their integrals*,**

• Timoshenko and Goodier, op. cit.

** N. I. Muskhelishvili. 1953. Some Basic Problems of the Mathematical

Theory of Elasticity, Noordhoff, Groningen.

8
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O(z) = Of(z) dz and (z) fY(z) dz .,.r.
J P

When the boundary conditions and the boundary geometry have simple enough

form, general solutions for V and T can be written. Included ii: this

category are problems for the circle and the half-plane. Several stress

formulas needed here are summarized below. These and other such relations are *

developed in great detail in the reference work by N. I. Muskhelishvili.*

11. The stresses and displacements are related to 0 , , , and

according to Kolosov's formulas which are

T + T 2t(z) + 'z]
xx yy L

-T + T + 2 iT 2[z4'(z) f- Y(z)]xx yy xy :

2G(u + iv) = K4(z) - z$(z) - (z)

where

i = /J7 z =x + iy

and

K = 3 -4

for plane strain or

3 a Z..

-1+o

for plane stress.

12. In a problem leading to a unique stress state, then 4 is deter-

mined uniquely except for an additive pure imaginary constant, and Y is

* Muskhelishvili, op. cit.

9



completely determined. Thus, if the function pairs (0, Y) and (O0P l0 give

the same stresses, we must have

*~ ic1

S. 4%*

where c is real. Integrating for 0 and ' shows that

* + ic z + c , '0'P+c
1 2 0 3

with c2 and c3 being complex. The constants, c1 , c2 , and c3 , corre- h'-.

spond to a rigid body displacement field of the form

2G(u + iv) = (K + l)c (-y + ix) + (Kcc2 - c 3 )

In a problem where only stresses are unique, unique displacements can be

obtained by specifying a displacement and rotation at one point. Then both .

and become unique.

13. The above formulas can be used to reduce the solution of plane

elasticity problems to an equivalent formulation requiring determination of

¢(z) and '(z) . Furthermore, these functions can be computed in general

form for certain restricted types of geometries and boundary conditions. A

case of special interest here involves the elastic half-plane subjected to rP.

stress-type boundary conditions. Let us assume that a half-plane occupies the

region -' < x < and y . 0 . The line y = 0 divides the plane into two

parts:

the region R defined by y >0 and

the region R defined by y < 0

The stress and displacement quantities of interest will exist in R . How-

ever, some of the mathematical formulas presented below contain quantities

defined for both R and R with appropriate limiting values being used for

approaches to the boundary y =0 from above or below.

14. Consider the case with the normal and shear stresses known at all

points of the boundary. Thus, we have

10

7. .7 -7 . . .
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T (t) =N(t) Tx (t) = T(t) -" *
yy xy '

where N and T are known functions. The complex stress functions which

solve this problem are

1 J (N - iT) dt
O(z) . 2 t

and

1 f (N + iT) dt -(z) z '(z)
Tz 2Ti t - z

Furthermore, the boundary stresses and displacements are related to the

boundary values of i in a remarkably simple form according to

N + iT = (t) - -(t)

where (t) and (t) denote limiting values of (D(z) at a boundary

point t approached from above or below the x-axis, respectively. The theo-

retical developments relating to these formulas appear in Chapters 16 and 19

of Muskhelishvili's* elasticity book.

-*'... I-

• Muskhelishvili, op. cit.

_,. .. > ,: - • ., .. .. : :. . ;v _- ~~~~~~... ........... ..... . .... ,,,...,.. ...........-. , .



_K -_ _' 7 . *' -

PART III: FUNDAMENTAL LOAD FORMULAS FOR THE HALF-PLANE

Stress-Function Methodology

15. The complex stress-function methodology leads to simple relations

for the stresses and displacements in a half-plane subjected to certain funda-

mental loading conditions such as application of a load distributed over a

uniform strip. These solutions can be employed to develop the stiffness and
flexibility matrices relating stresses and displacements that occur when a "'"-

series of vertical loads, horizontal loads, and couples are applied to the

surface of a half-plane. Wk

Vertical and Horizontal Load Solutions-'.

16. Let us first develop a solution for the case of a vertical load P0

and a horizontal load V , distributed uniformly over the strip

-a < x < a . Thus, we have

N + iT =O for Itl > a

and

P + iv
0 0N + iT 2a for ItJ < a

Then

V + ip
D a(z) [tn(z - a) - Zn(z + a)]

where ((z) is an analytical function in the plane cut along a straight line

between z= -a and z = +a . The formula for D can be used to compute the

boundary displacements which are uniquely determined except for a rigid body

displacement and rotation. , A

17. The boundary values of D are given by

12
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(p) -Y int -al - nIt + al ±et

where

V0 + ip 01 
.

0 0n

and

6(t) =0 for Iti > a and e(t) = rfor Iti < a -

Consequent ly,

2Li u(t) + iv'(t)] =(c+ I)Y0[Inlt -al - mit + al] + i(K - ~ 1 0 r

for ItI < a

and

21[u'(t) + iv'(t] = I +1Y[Lnit -al - nit + al] for Itl > a

18. The last two equations can be combined by using the singularity

function <t - t 0> n which equals (t - )n when t > t0and is zero

otherwise. Then we get

u'(t) + iv'(t) a cIr(t) + i8[t + a>0  <t -a>]

where

=(K + 1)(V 0 + il'o

0 81.lITa

(Kc -)V 0 + 1%)

0 21'a

13



and "*"

r(t) - tnlt - al - tnlt + al

Expressions for u(x) + iv(x) can be obtained by integrating u' + iv' It -,4

is not hard to show that

f 0 0 1 1J[t+a> <t a> dt =<x + a> -<x -a> -a =g(x)

0

and

/x

f [nlt- al -C£nlt + al] dt = (x -a) nix- a! - (x + a)tnlx + al
0

+ 2an(a) = f(x)

so the general displacements equation for a distributed load is

u(x) + iv(x) a f(x) + iog(x)

The function g(x) is odd valued and has three different intervals of defini-

tion, namely

g(x) =-a , x < -a

= x -a i_ x _9 a

= a x > a

Furthermore, f(x) is an even-valued function having a logarithmic singular-

ity at jxl - These two functions form the basis for computing the defor-

mation effects of vertical or horizontal forces as well as couples. Several -.

special cases arise.

14 ,-

-. -. . . . . . .-. %.
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a. Case I-Vertical Force Only (positive direction upward). In
this instance, we have

V 0 =0

so that

iP0 (1 + K)

0 8wn'a

and

ip (Kc 1)

Then

P0 Pl(K 1)~
u(x) + iv(x) =i 8wa f(x) - 81ja Jg(x)

The real and imaginary parts of this equation give

v(X) 87a [f(x) -f(e)]

and

-p (K -1)

81.ia [g(x)I

8ua.

where a rigid body translation term has been added into the
v(x) equation to make v = 0 at an arbitrary reference point
x =e.A

b. Case II--Horizontal Force Only (positive direction to the
right). In this instance P 0 ,so

15



(K + 1)Vo (K - I)vo
00 00iaO 0 8liJ and 6 0 = 8 a "

Then

V 0 (K + 1)

u(x) 8lra [f(x) - f(e)]

V. V K
Vo - 1)

v(x) = 8ja [g(x)]

where an adjustment has been made in the horizontal displace-
ment equation to make u vanish at x = e

c. Case IIl--Couple (positive direction counterclockwise). The
load effect of a couple can be obtained by combining the
effects of two forces of equal magnitude and opposite direc-
tion. Let us represent a couple of magnitude M by placing a

0
force -M /A at x = 0 and a force MO/A at x = A . We

00
then let A approach zero. The resulting displacement
equation is

MO(K + 1) lim ff""'A'
u(x) = 8A)a AO - f(x)]/

81j k-a

which becomes

M + 1)

u(x) f'(x)] =r(x)
8 11 Ta 8wira l~)

and similarly,

MO(K - 1) MO(K - 1) 0 0%'
v(x) = 0 [g'(x)] = [<x + a> - <x- a> 0

8ipa 8via

16...

[ ~~16 )i ?
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Flexibility and Stiffness Matrices

19. In order to form the flexibility and stiffness matrices relating

loads and displacements for a series of vertical forces, horizontal forces,

and couples, it is necessary to know the deflection equations and also the

rotation equations for the three different types of load quantities. It is

not hard to see that the rotation of any initially horizontal element on the

surface of the half-plane is

dv (x)
6(x) dx

so the rotation function is obtained by differentiating the vertical displace-

ment equation.

20. The purpose of distributing forces over a width 2a is to avoid

displacement singularities occurring at the point where a concentrated load

is applied. In a practical application, the value used for the width param-

eter should be small compared to the distance between successive load appli-

cation points. Taking a = d/20 , where d is the smallest distance between

adjacent load points, seems to be a reasonable choice. It must be realized

that results obtained will depend, somewhat, on the choice of parameter a

The size of a should be small enough so that a concentrated load is satis-

factorily replaced by a distributed load. At the same time, this parameter

must be large enough so that round off errors do not cause inaccurate calcula-

tion of the various influence functions.

Displacement Loads

21. Let us now summarize the various displacement formulas correspond-

ing to unit-load quantities applied at x = 0 . These relations involve

elastic constants

0 8 P ra and e0 = 8pa

and functions

4 17

1 7 "
°-
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f(x) (x -a)tnlx -al ( x + a)tntx + a

r(x) f'(x) tnix -al - nix + al I

11 2a
s~) f()=(x -a) -(x + a) (x 2 a2

g(x) <x + a> <x - a> -a

0 0h(x) =g'(x) =<x + a> <x- a>

where f ,s ,and m are even valued and r and g are odd valued.

22. For a vertical load at x 0 we have

v =c 0 [f(x) -f(e)] c cF(x)

u -e g(x)
0.-

C c0r(x) P

For a horizontal load at x =0 we have

v e e0g(%)

u = c0F(x)

8= e h(x)

For a couple at x =0 we have

V C - 0 r(x)

u e eh(x)

e -e B(X)

18



23. These functions can be used to formulate the flexibility matrix cor-

responding to the circumstance where horizontal forces, vertical forces, and

couples are applied at a series of points on the surface of a half-plane. A

program is given below which forms a 3n by 3n flexibility matrix for a

general set of points x1  . x -Horizontal, vertical, and rotational

quantities in the matrix correspond to row and column positions 3i - 2 , .. ,

3i-1 , and 3i for i1 ... n.

19I'
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PART IV: ALTERNATIVE REAL-VARIABLE FORMULATION
RESTRICTED TO VERTICAL LOADS

Complex Variable Methods

24. Complex variable methods were employed above to derive various re-

sults applicable for a half-plane. When only vertical loads and deflections

are of interest, then equivalent results can be obtained more simply by using

a real-variable formulation. This specialized loading condition also has a

meaningful interpretation in a three-dimensional context where a finite-width

beam rests on a half-space and is subjected to loads symmetrical about the
vertical midplane through the longitudinal axis of the beam. The vertical-

loading problem will now be studied in more detail before moving on to analy-

sis of the beam-interaction problem.

25. Consider an infinite half-space the surface of which is the xz

plane and the interior of which is defined by y < 0 . We assume that concen-

trated loads P in the y direction are applied at positions x.

a = I ,.,., n on the x-axis. It is desired to compute the foundation stiff-

ness matrix KF  in the relation

P K V
= F

which involves the applied loads P , the vertical deflections V , and the

stiffness matrix K Formulation of the stiffness matrix is to be based
F

upon the linear theory of elasticity. The plane analog of this problem occurs

when the concentrated point loads are replaced by concentrated line loads hay-

ing a given magnitude per unit of thickness in the z-direction. Each of these

fundamental problems is discussed below.

26. The deflection functions associated with a concentrated load ap-
• **,ttWea

plied to the surface of a half-space are well known. 'When a

* Timoshenko and Goodier, op. cit. p 5.

•* Muskhelishvili, op. cit. p 8.
t C. S. Desai and J. T. Christian. 1977. Numerical Methods in Geotechnical
Engineering, McGraw-Hill, New York.

ti A. P. S. Selvadurai. 1979. Elastic Analysis of Soil Foundation
Interaction, Elsevier, New York.
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vertical force P is applied at some surface position xi , then the verti-
0

cal deflection occurring at another surface position x. is given by -..

=-(I - a) 01 0v ij Eo I x i  xj[L' "':-'
0 '-

where F and a denote Young's modulus and Poisson's ratio. A similar

solution exists when the concentrated point load is replaced by a concentrated

line load distributed parallel to the z-axis. In that instance the corre-

sponding formulas relating load and deflection are

2(1 - 2 0vi = - 0 ix1 - x for plane strain

ij iTrEj
0

and

2P 0  r. .

v N-- knx - x I for plane stress
ij rE i M-

0

Infinite Displacements

27. These formulas share the same undesirable characteristic of giving

infinite displacements at the point of load application. This difficulty can .

be remedied by averaging the load over a finite area as shown in Figure 1. -

Consider the case where a concentrated load P is distributed uniformly over

the region -a < x < a , -b < z < b . Then the deflection at any position on

the x-axis is seen by superposition to be

S a b "'""

P01 . dr, dl
0 ff

a -b

jj 1

, ..

.. . . .. . . -- .| b .. . ... | -.. . .-.
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or

2 x+a b

V 21TE ab0 ff +2

x a 0

Evaluation of the above double integral is tedious but can be accomplished in

terms of elementary functions. It turns out that

02)..r-:-..l

1r~ab a bx

22

t + - a [b4b+2 + (a x)2

2 2

In of above formula x is regarded as a positive quantity. When x is

negative, Y should be used. It can be shown that as x becomes large,

the last formula assumes the asymptotic form

P 0 (1

ra 0 x x"""

as would be expected from the concentrated load solution. In fact, when x/a

is larger than six, the difference between the concentrated load solution and

the distributed load solution is negligible regardless of the value of b

28. A distributed load solution can also be obtained for the case of

plane stress or plane strain. Let us assume that a load of P 0  per unit of

z-thickness is distributed over the region -a < x < a . Using superposition

for the plane strain solution yields

qb 2'- ',.

2 a 2 x+a .V. ..

P 0 - a +0)(a(-Px)(.,-.-,

v(x) for Ea J reard d& ar Eoa f u tn i-.d

-a x-a

23



which gives

2 P1 2)0x+a 0 O I -2

v(x) - E 0 a x-a 7_Eo0 a [f(x)- 2ain(a) + 2a]

where f(x) is the same function obtained earlier in the development using

complex variables. Hence, the displacement formulas given by the two methods

are the same with the exception of a rigid body translation. The analogous

formula for plane stress results simply by replacing

2
(I - 0 2) with 1

29. The distributed load solution for the half-plane is bound at x = 0

but has a logarithmic singularity at x = . As a remedy for this, it is

reasonable to choose a value e which is much larger than a and perform a

rigid body translation such that v = 0 at x = ±e Thus, we assume that

the deflection pattern for plane strain and a concentrated line load is C

2PO(1 0 2) -
v(x) = (Eoa [f(x) - f(e)]

whe re

f(x) = -(x + a)tnlx + al + (x - a)tnlx - a

30. In the instance of both plane loading and three-dimensional load-

ing, the formulas for deflection at a distance x from the point of load ap-

plicatlon are of the form

v(x) = coF(x , a , b)
0

where F does not depend on the elastic constants. The constant c is

inversely proportional to aE and is influenced by Poisson's ratio only in "

the cases of plane strain and three-dimensional loading. By superposition,

24
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the surface deflection at any position x due to loads P. at x is ,.

n
v(x) c F(x - x , a , b)P.

j=1r V

Evaluating this relation at xi  to get vi gives

v1 = c o0 hijPj '''.,."...

j=l

or

= c0HP

where the foundation flexibility matrix H has elements

h = F(x - x , a , b)
ij i j4

Inverting this relation yields the result

"- KF

where the desired foundation stiffness matrix KF  is related to the flexibil-

ity coefficients according to

K H-1
F 0

It is important to keep in mind that H depends only on dimension parameters -

E0  -2a, b , and x1 , whereas co  involves E a(- , and parameter a -
0-.

with the functional dependence which these variables have on KF being quite .-

simple in form. iW
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Solution for Load Deflection Relations

31. Before an analysis can be made of the interaction between a beam

and a half-plane, necessary load deflection relations for a beam are needed.

Toward this objective, a concise solution is presented below for the shear,

moment, slope, and deflection in an Euler beam having constant depth and sub-

jected to an arbitrary combination of concentrated loads and piecewise lin-

early varying (ramp) loads. This solution will be used to investigate the

interaction between a loaded beam and the supporting elastic half-plane. The

contact between the beam and the half-plane occurs at several support points

which can transmit only vertical concentrated forces. Displacement continuity

conditions between the beam and the plane are imposed at the support points.

By using the displacement formulas for a beam and a half-plane subjected to

the same concentrated interaction loads, imposition of displacement continuity

conditions at the interaction points gives a system of simultaneous equations

solvable for the support forces.

32. Beam deflection problems can be conveniently formulated by using

" the singularity function <x - x defined such that

<x x> =0 for x < x 0

0n

= ( x - f o r x x 0

where n is a nonnegative integer. This type of function is quite useful for

describing general loading conditions.

33. The analysis of beam deflection problems involves the quantities:

load per unit length = w

shear = V

moment = M

slope = s

vertical deflection = v

The differential equations relating these variables are

26
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dV di ds M dv
dx Tf ,dX ff  dx ff T-I Tx d- 8 '':i

where xv

E = Young's moduluse

I - moment of inertia of the beam

Fundamental Solutions

34. It is convenient to introduce several fundamental solutions used in

forming more general solutions by superposition. Consider first the effects

of a unit load. Assume that a beam occupies the region x -> 0 and satisfies,

at x =0 , the homogeneous conditions V = 0 , M = 0 , s = 0 , and

v 0 Also assume that a concentrated load of unit magnitude acts at

x c It is found that

V=<x -c >0  M =<x -c > I  222:

1 <x - I>3

2 E v 6  El

35. The load and deformation quantities associated with ramp loading

are also of interest. Assume that a distributed load begins at x a with

magnitude R and varies linearly to x - b where the load intensity is T

The slope of the load function is S = (T - R)/(b - a) and the load function

for this case is

0 101W= R <x -a> + S<x -a> -T<x -b> -S<x b>

Integration of the differential equation, subject to homogeneous initial con-

ditions, gives

V= R<x a> + I S<x a> T<x b S<x b> 3 2
2 2

S 2 1 3 1 2 1 3M -R<x -a> ~ - a> T<x - b> -- S<x - b>2 626

1 3 1>4 1>3 1 >4Els = - R<x - a> + L S<x - a> - - T<x - b> - - S<x -b
6 24 624

27
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4 > 4 I S 5...'
EIv= -R<x -a> + 1  S<x a>5  

2 4 T<x b> -

36. It is helpful to represent the previous equations in the following

compact form. We designate

FUNCTION FUNIT(X,C,EI,ID)

as the function which gives the effects of a unit concentrated load. The

function produces shear, moment, slope, or deflection according to whether

ID = I , 2 , 3 , or 4 , respectively. Similarly, we designate

FUNCTION RAMP(X,A,R,B,T,EI,ID)

as the function returning the effects of a ramp loading.

37. The fundamental solutions shown above can be used to formulate and

solve a general problem involving multiple loads. Assume that the following

apply:

a. At the left end where x = 0 the moment and shear vanish.

b. At the right end where x = Z , the deflection and the slope
vanish.

c. At several points external concentrated loads act. These are
described by

F at d j 1... nf

d. At several points foundation reactions occur. These are
described by P at xi I j = I , .... n . The foundation

reactions are initially unknown but are treated as parameters
to be computed later using displacement constraints.

e. Along several intervals distributed loads act. These are
described by

w (x) = R <x aj> 0 + S <x a >'

0 S
Tj I . ... nr,

38. Using the various terms developed above, the deflection equation

for a beam with general loading and general end conditions is

28



n

vB W v *V(0) + v (O)x + Vx(x) + I. P *FUflfl(x x. El ,4)

J-1

where vB(0) and v'(0) represent the left end deflection and slope which
BV B

are for the present not known and

Vx (x) F F*FUNIT(x di El 4)

J=1

+ RAMP(x aj R , b. T El ,4)

j=1

29
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PART VI: COMBINED LOAD DEFLECTION RELATIONS
FOR THE BEAM AND THE FOUNDATION

Analysis Procedures

t. 39. The analysis developed in Part V provides the tools needed to form
combined flexibility matrices for computing interaction forces between a I-We

loaded beam and a supporting half-plane. The necessary procedure is described

in the following paragraphs.

40. The beam is subjected to a general external loading w(x) plus a

series of reactions PI applied at the foundation support points x1  for

i = I , ... , n . The boundary conditions on the beam are that the shear and

moment vanish at each end. Integrating the differential equation for the beam

deflection gives an equation of the form

n

v B(x) = VB(0) + v (O)x + vEXT(X) + h (x)P'

J Jj=1

where subscript B distinguishes the beam and P1  .... P v B(O)

vB(O) are to be determined. The function v (x) represents the combined
B EXT

deflection contribution of all loads except for the foundation reactions. The

function

3<x - >

h (x)j 6EI

represents the deflection contribution for a unit load applied at x. The

conditions of zero shear and moment at the right end are

n

• EXT,

i-1

30
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and

J.-1

where VEXT  and MEXT  refer to shear and moment terms caused by the external

loads.

Singularity Avoided

41. Considering the foundation, let t(x) represent the surface de-

flection at position x resulting from a unit load applied at x = 0 . To

avoid the singularity in the concentrated load solution for a half-plane, it

is understood that the concentrated load is approximated by a statically

equivalent uniform pressure applied over a narrow strip. This strip is con-

sidered narrow, having a width small compared to the total length of the beam.

A strip width of k/1000 might be reasonable. Using superposition indicates

that the foundation surface deflection caused by surface loads P1 ,'" ' n

* is

j =n

VF(x) = - t(x -x)P

j jJ=1

Therefore, the flexibility matrix relating surface loads and deflections and

displacements is

n

i-1

involving a symmetric matrix with elements t =t(x -x ).A negative
ijp i

sign in the last two equations is used because an upward reaction on the beam

would correspond to a downward (negative) displacement in the foundation.

Matching displacements in the beam and half-plane at reaction points given

31
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y. n

I [h1j + ]rijPj + VB(0) +v (0)xi  - vExT(xi) , i 1 , 2 , . n

j=1

m)
where

h = h (x.)
ij O wl

is supplemented with the conditions of vanishing shear and moment at the right

end, a system of n + 2 equations is obtained which is solvable for P1
P 2'" Pn ' VB(O) ,v;(O).im.3

42. Assuming that the foundation and beam load transfer mechanism takes

place at a finite number of support points amounts to an effort to discretize

a continuous foundation pressure.

Foundation Pressure Discretization

43. It was assumed that load transfer and displacement continuity occur

only at a finite number of support points along the beam. In this manner, a

discretization of the continuously varying foundation pressure is achieved.

For satisfactory results, it is probably necessary to use 40 or more interac-

tion points. After the concentrated load reactions have been found, a sta-

tically equivalent piecewise linear load distribution can be derived which

better represents the actual interface pressure. With all loads on the beam

being known, any additional quantities, such as internal shear and moment, can

he computed for arbitrary positions on the beam.

44. The procedure just developed employs flexibility matrices. In some

cases it may be more convenient to use a stiffness matrix formulation. Such a

formulation outline follows. Consider a beam with the right end free and

left end values of shear, moment, slope, and deflection which are FO , -MO

v'(O) , and v(O) . By the previously discussed methods for a beam, it is

found that the deflection vi at position xi associated with loads R1

. ... ,P is
n

32
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NI

n

v= v(O) + v'(O)xi + b1 jPj

J-1~
, %%

where

xi (3x. - xi) + <x- x.>3]

ij ji 6El

Using matrix notation we can write

T -T
[vi  .... v T = V , [v(O) , v'(O)] Vo

and

.. T R , ,M = P

[X1 xi 0 0

TAssume that the vector of nodal forces [P1 , "'" , Pn = P be composed of

external loads P and foundation reactions P In matrix form, the beam
EXT F

deflection equation gives V - RV + BP which also implies that
0

P = K BV - K BRV where KB  denotes the inverse of the flexibility matrix B

Furthermore, the static equilibrium condition balancing the left end loads and

the external loads is simply

T T- T
PO =-R P =-RTKB + RTKBRVo

Separating the load vector P into two parts gives

P = PE + PF P E K FV

where K denotes the foundation stiffness matrix. Then the requirement that
F

the foundation and the beam displacements match at x i  ... , x leads ton
P - K FV = K BV - K BRV This condition coupled with the requirement that P

33
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should vanish gives the following system of equations which can be solved for "
T T T .[ , V0]

(K B  + K )  -K BR =: .:1i

(KR)R R
[B %B!

The square matrix on the left side of the last equation is symmetric and the

system can be solved by methods such as Cholesky decomposition commonly used

in finite-element analysis. Despite the fact that a stiffness matrix approach

can be used in analyzing the interaction problem of interest here, using flex-

ibility matrices seems more natural with the governing differential equations

giving deflections directly as function of loads.

Numerical Results

45. The analysis procedures developed here were implemented in two com-

puter programs. The first program, which computes shear, moment, deflection,

and interface pressure for a constant depth beam supported on an elastic half- p -

plane, is discussed in Appendix A. The half-plane can be in plane strain or

plane stress. The beam is loaded by a general combination of concentrated

loads and linearly varying distributed loads. The interaction between the

half-plane and the beam accounts only for vertical load components occurring

at an arbitrary number of supports spaced equally between limits defined

according to the data input. A system of equations determining the interac-

tion forces is formulated and solved. The interaction forces are then re-

placed by distributed loads to provide a piecewise constant approximation for bc
the foundation pressure. The interface pressure is used to compute values for

the shear, moment, and deflection. Three example problems are included as

typical test cases. A beam 1,200 in.* long and 120 in. deep has a modulus of

3,00 kips/in. and rests on a half-plane having an elastic modulus equal to
2

300 kips/in. and Poisson's ratio equal to 0.2. The load cases studied

include:

A table of factors for converting non-ST units of measurement to SI (met-

ric) units is presented on page 3.

34
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a. A 500-kip downward load is distributed uniformly over the total
length. (The beam width is I in. measured normal to the
xy-plane.

b. Two concentrated downward loads, each having a magnitude of
250 kips, are applied at the beam ends.

c. Two concentrated couples, each having moment magnitudes of ' - It
6,000 kip-in., are applied at the beam ends. The sense of the
couples at the left and the right ends are clockwise and coun-
terclockwise, respectively. The couples are simulated by using
ramp loads.

46. Computer output for these problems appears in Appendix A. These

results eyhibit the type of behavior typically observed in punch problems,

namely the occurrence of very large stresses near the ends of the beam. In

the case of the uniformly loaded beam, the large interface pressure at the

ends rapidly diminishes to a nearly uniform value near the middle of the beam.

Then the same external load resultant is concentrated at the ends, rather than

being distributed uniformly, most of the load goes into the foundation at the

ends. Because the half-plane tends to deflect downward at the midpoint more

so than the beam does, a reversal in the reaction direction occurs near the

beam center to maintain displacement continuity. In the third case, the twoconcentrated end couples have a zero statical resultant and tend to cause the 
- "

beam to have compression in the top and tension in the bottom. If the beam

ends were not connected to the half-plane, the ends would rise. Consequently,

imposition of displacement continuity causes a tensile interface reaction at
the ends and compression at the middle. J

47. Some discussion of the approximations used to obtain distributed

interface pressures should be presented. After the reactions R , R

at points , .... , x equally spaced at a distance d are computed, then

each Interior reaction Ri , 2 i - n - I is distributed uniformly over an

interval of length d centered at xi The left end reaction R is dis-

tributed urIformly between x = 0 and x = 0.5d . The right end reaction is

d(!;trihuted similarly between x = i - 0.5d and x = k . Although this

methd is simple, it leads to a small moment iml, lance at the ends. Since the

lo ad e-ultant, due to R, , is moved inward from the left end to a position

(' . Y't. , this causes a couple effect which becomes negligible when enough

supports are used. A similar moment imbalance is applicable for the right

end. In the ca--se where the loading and the support positions are symmetrical

AbOut the beam center, the moment imbalance, with respect to the right end,

35
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cancels so that the internal moment at x = j still comes out to be zero.

48. A source listing of the first computer program used to solve the ,.,

three test examples immediately follows the numerical results. The second -

program and numerical results are detailed and are given in Appendix B. Since

both programs run interactively, the data input options are evident from the

output. The results presented were obtained by use of an IBM PC/XT computer

employing an Intel-8087 floating point coprocessor and a Winchester disk

drive. All problems were solved in less than two min.

36
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APPENDIX A: PROGIRAM I--FOUNDATION INTERACTION BETWEEN
A BEAM AND AN ELASTIC HALF-PLANE

1. Program I deals with a constant depth beam supported on an elastic IM

half-plane, in plane strain or plane stress, and computes shear, moment,

deflection, and interface pressure. Interaction forces between the half-plane

and the beam account only for vertical type loads which occur at optional and -

equally spaced supports between certain limits defined according to the data

input.

A.

-a

.g ,



Case I--Uniform Distributed Downward Load

2. A 500-kip/ft downward pressure load is applied over the total length

of the bear as shown in the following sample problem.

INPUT: Problem title (for echo check put $ in column one)
Sample problem for WES with constant distributed load (kipsinches)

SELECT AN OPTION: 1 = Plane strain, 2 = Plane stress

INPUT: Young's modulus and Poisson's ratio for the half plane
300.,.2

INPUT: The length, the depth, and Young's modulus for the beam
1200. .120. .3000.

To define the foundation interaction points select: X-min, X-max,

the number of evenly spaced support points
and the width of the support in the direction of the beam axis
O.,1200.,41,1.

For the external beam lcading input: The
number of concentrated loads and the number of
linearly varying ramp loads
0,1

INPUT: The starting magnitude, starting position, end magnitude,
and end position for each ramp load
-.416666666,0.,-.416666666,1200.

Is the foundation flexibility matrix to be printed? (Y/N)
N

Is the foundation stiffness matrix to be printed? (Y/N)

A2-

q'''8 -

bI'%°
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FOUNDATION FORCES AND DISPLACEMENTS

Index Position Reaction Displacement '

Force in beam-
[relative]

1 .OOOOOE+00 1.58169E+01 -6.83897E-14
*2 3.OOOOOE+01 1.25589E+01 -5.42858E-02

3 6.OOOOOE+O1 1.14662E+01 -1.07908E-01
4 9.OOOOOE+0l 1.10904E+01 -1.60276E-01
5 '1.2OOO0E+O2 1.10277E+01 -2.10858E-01
6 1.50000E+02 1.11146E+01 -2.59204E-01
7 1.80000E+02 1.12720E+01 -3.04957E-0O1
8 2.lOOOOE+02 1.14575E+01 -3.47845E-01
9 2.40000E+02 1.l6478E+01 -3.87673E-01

10 2.70000E+02 1.18295E+01 -4.24309E-01
11 3.OOOOOEs-2 1.l9957E-0l -4.57679E-01
12 3.30000E+02 1.21430E+01 -4.87745E-01

*13 3.60000E+02 1.22703E-01 -5.14505E-0l
14 3.90000E+O2 1.23779E+01 -5.37979E-01
15 4.20000E+02 1.24669E-01 -5.58200E-Ol
16 4.50000E+02 1.25388E+01 -5.75210E-01
17 4.80000E+02 1.25950E+01 -5.89052E-01

*18 5.1O000Ei02 1.26371E+01 -5.99769E-01
19 5.40000E+02 1.26661E+01. -6.07396E-01
20 5.70000E+02 1.26832E+01 -6.11961E-01
21 6.OOOOOE+02 1.26888E+01 -6.13480E-01
22 6.30000E+OZ 1.26832E+01 -6.11961E-01
23 6.60000E+02 1.26661E+01 -6.07396E-01
24 6.90000E+02 1.26371E+01 -5.99769E-01
25 7.20000E+02 1.25950E+01 -5.89052E-01
26 7.50000E+02 1.25388E+01 -5.75210E-01
27 7.80000E+02 1.24669E+01 -5.58200E-Ol
28 8.10000E+02 1.23779E+01 -5.37979E-01
29 8.40000E+02 1.22703E+01 -5.14505E-01
30 8.70000E+02 1.21430E+01 -4.87745E-01
31 9.OOOOOE+02 1.19957E+01 -4.57679E-01
32 9.30000E+02 1.18295E+01 -4.24309E-01
33 9.60000E+02 1.16478E+01 -3.87673E-01
34 9.90000E+s02 1.14575E+0l -3.47845E-01
35 1.02000E+.03 1.12720E+01 -3.04957E-01
36 1.05000E+03 1.11146E+1 -2.59204E-01OL
37 1.08000E+.03 1.10277E+01 -2.10858E-01l -
38 1.11000E+03 1.10904E+01 -1.60276E-01
39 1.14000E+03 1.14662E+01 -1.07908E-01
40 1.17000E+03 1.25589E+01 -5.42858E-02
41 1.20000E+03 1.58169E+01 .OOOOOE+00

Residual shear error at right end: -4.08562E-14
Residual moment error at right end: 1.19691E-11

Displacements are relative to: -1.28428E+00 at node # 41

To tabulate foun~dation pressures for a given interval: input
X-min, X-max. and number of increments(input 0,0,0 to STOP)

Al3
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SSUMMARY OF RESULTS FOR INTERFACE POINTS

Position Interface Shear Moment Displacement
Pressure [relative]

-. OOOOOE+00 1.05446E+00 .OOOOOE+00 .OOOOOE+00 -6.83897E-14
3.OOOOOE+0l 4.18632E-0l 9.59639E+00 2.15477E+02 -5.42858E-02
6.OOOOOE+Ol 3.82205E-Ol 9.10894E+00 5.00155E+02 -l.07908E-Ol% z
9.OOOOOE+0l 3.69679E-01 7.88721E+00 7.56506E+02 -1.60276E-01
1.20000E+02 3.67590E-Ol 6.44625E+00 9.71743E+02 -2.10858E-01
1.50000E+02 3.70488E-Ol 5.01741E+00 1.14337E+03 -2.59204E-01
1.80000E+02 3.75732E-Ol 3.71071E+00 1.27370E-03 -3.04957E-01

*2.10000E+02 3.81918E-01l 2.57546E+00 1.36730E+03 -3.47845E-01
*2.40000E+02 3.88259E-Ol 1.62811E+00 1.42964E+03 -3.87673E-01
*2.70000E+02 3.94317E-01 8.66745E-01 1.46638E+03 -4.24309E-01

3.OOOOOE+02 3.99857E-Ol 2.79349E-01 1.48295E+03 -4.57679E-01
3.30000E+02 4.04766E-Ol -1.51311E-01 1.48432E+03 -4.87745E-01
3.60000E+02 4.09010E-Ol -4.44675E-01 1.47490E+03 -5.14505E-01

3.90000E+02 4.12597E-01 -6.20570E-01 1.45852E+03 -5.37979E-01

4.50000E+02 4.17960E-Ol -6.95266E-01 1.41723E+03 -5.75210E-01
4.80000E+02 4.19834E-01 -6.28356E-01 1.39717E+03 -5.89052E-01
5.10000E+02 4.21235E-01 -5.12314E-01 1.37990E+03 -5.99769E-01
5.40000E+02 4.22205E-Ol -3.60709E-01 1.36670E+03 -6.07396E-01
5.70000E+02 4.22774E-01 -1.86027E-01 1.35843E+03 -6.11961E-01

*6.OOOOOE+02 4.22961E-01 -6.74544E-13 1.35562E+03 -6.13480E-01
*6.30000E+02 4.22774E-01 1.86027E-01 1.35843E+03 -6.11961E-01
*6.60000E+02 4.22205E-0l 3.60709E-Ol 1.36670E+03 -6.07396E-01

6.90000E+02 4.21235E-Ol 5.12314E-01 1.37990E+03 -5.99769E-01
7.20000E+02 4.19834E-01 6.28356E-01 1.39717E+03 -5.89052E-01

*7.50000E+02 4.17960E-01 6.95266E-01 1.41723E+03 -5.75210E-01
*7.80000E+02 4.15565E-Ol 6.98137E-01 1.43840E+03 -5.58200E-Ol

8.10000E+02 4.12597E-01 6.20570E-01 1.4585ZE+03 -5.37979E-01
*8.40000E+02 4.0901OE-0l 4.44675E-01 1.47490E+i03 -5.14505E-01

8.70000E+02 4.04766E-01 l.51311E-Ol 1.48432E+03 -4.87745E-01
*9.OOOOOE+02 3.99857E-Ol -Z.79349E-Ol 1.48295E+03 -4.57679E-01
*9.30000E+02 3.94317E-01 -8.66745E-01 1.46638E+03 -4.24309E-01

9.60000E+02 3.88259E-Ol -1.62811E+00 1.42964E+03 -3.87673E-01
N9.90000E+02 3.81918E-01 -2.57546E+00 1.36730E+03 -3.47845E-01

1.02000E+03 3.75732E-01 -3.71071E+00 1.27370E+03 -3.04957E-01
1.05000E+03 3.70488E-01 -5.01741E+00 1.14337E+03 -2.59204E-01
1.08000E+03 3.67590E-Ol -6.44625E+00 9.71743E+02 -2.10858E-01
1 .11000E+03 3.69679E-Ol -7.88721E+00 7.56506E+02 -1.60276E-01
1.14000E+03 3.82205E-01 -9.10894E+00 5.00155E+02 -1.07908E-01
1.17000E-03 4.18632E-Ol -9.59639E+00 2.15477E+02 -5.42858E-02
1.20000E+03 1.05446E+00 -1.51545E-14 -6.59668E-11 .OOOOOE+00

To tabulate foundation pressures for a given interval: input
X-rnin, X-max, and number of increments(input 0,0,0 to STOP)
0,0,0
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Case lI--Two Concentrated Downward Loads at Beam Ends

3. Two concentrated downward loads applied at beam ends appear in the ,

following sample problem. c e t o a dih

INPUT: Problem title (for echo check put $ in column one)
Sample problem for WES with concentrated loads at ends(kips,inches)

SELECT AN OPTION: 1 = Plane strain, 2 = Plane stress

INPUT: Young's modulus and Poisson's ratio for the half plane
300.,.2

INPUT: The length, the depth, and Young's modulus for the beam
1200.,120. ,3000.

To define the foundation interaction points select: X-min, X-max,
the number of evenly spaced support points
and the width of the support in the direction of the beam axis
0.,1200.,41,1.

For the external beam loading input: The
number of concentrated loads and the number of
linearly varying ramp loads
2,0

INPUT: The magnitude and position of each applied force
-250.,0.
-250.,1200.

Is the foundation flexibility matrix to be printed? (Y/N)
n

is the foundation stiffness matrix to be printed? (Y/N)

A5'
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FOUNDATION FORCES AND DISPLACEMENTS

Index Position Reaction Displacement A
Force in beam

[relative)
*1 .OOOOOE+00 9.47707E+01 -2.11667E+00
*2 3.OOOOOE+O1 5.93416E+01 -1.86392E+00
*3 6.OOOOOE+0l 4.08453E+01 -1.62026E+00
*4 9.OOOOOE+0l 2.88133E+01 -1.39187E+00O

5 1.20000E-02 2.02717E+01 -1.18231E+00
6 1.50000E+02 1.39668E+01 -9.93318E-01

*7 1.80000E+02 9.23796E+00 -8.25325E-01
8 2.10000E+02 5.67990E+00 -6.77882E-01

*9 2.40000E+02 3.01605E+00 -5.49948E-01
10 2.70000E+02 1.04367E+00 -4.40118E-01
11 3.OOOOOE+02 -3.92848E-01 -3.46791E-01

*12 3.30000E+02 -1.41621E+00 -2.68294E-01
13 3.60000E+02 -2.12463E+00 -2.02977E-01
14 3.90000E+02 -2.59712E+00 -1.49274E-01
15 4.20000E+02 -2.89722E+00 -1.05748E-01
16 4.50000E+02 -3.07562E+00 -7.11239E-02
17 4.80000E+02 -3.17223E+00 -4.43064E-02

*18 5.10000E+02 -3.21772E+00 -2.43912E-02
*19 5.40000E+02 -3.23477E+00 -1.06719E-02
*20 5.70000E+02 -3.23894E+00 -2.64266E-03
*21 6.OOOOOE+02 -3.23934E+00 .OOOOOE+00

22 6.30000E+02 -3.23894E+00 -2.64266E-03
23 6.60000E+0O2 -3.23477E+00 -1.06719E-02
24 6.90000E+02 -3.21772E+00 -2.43912E-02
25 7.20000E+02 -3.17223E+00 -4.43064E-02
26 7.50000E+02 -3.07562E+00 -7.11239E-02
27 7.80000E+02 -2.89722E+00 -1.05748E-01
28 8.10000E+02 -2.59712E+00 -1.49274E-01 .

29 8.40000E+02 -2.12463E+00 -2.02977E-01.
30 8.70000E+02 -1.41621E+00 -2.68294E-01
31 9.OOOOOE+02 -3.92848E-01 -3.46791E-01

*32 9.30000E+02 1.04367E+00 -4.40118E-01
33 9.60000E+02 3.01605E+00 -5.49948E-01
34 9.90000E+02 5.67990E+00 -6.77882E-01
35 1.02000E+03 9.23796E+00 -8.25325E-01
36 1.05000E+03 1.39668E+01 -9.93318E-1
37 1.08000E+03 2.02717E+01 -1.18231E+00
38 1.11000E+03 2.88133E+01 -1.39187E+00
39 1.14000E+03 4.08453E+01 -1.62026E+00
40 1.17000E+03 5.93416E+01 -1.86392E+00
41 1.20000E+03 9.47707E+01O -2.11667E+00

*Residual shear error at right end: 9.94760E-14
*Residual moment error at right end: 3.99893E-11

*Displacements are relative to: -6.93861E-01 at node # 21

* To tabulate foundation pressures for a given interval: input
X-min, X-r-'ai, and number of 4ncrements(input 0,0,0 to STOP)

* ~ 0 O, 12iJo. ,
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*** SUMMARY OF RESULTS FOR INTERFACE POINTS -

Position Interface Shear Moment Displacement

Pressure [relative]

.OOOOOE+OO 6.31804E+OO -2.50000E+02 .OOOOOE+O0 -2.11667E+00

3.OOOOOE+Ol 1.97805E+00 -1.25559E+02 -5.14513E+03 -1.86392E+00

6.OOOOOE+0 1.36151E+00 -7.54650E+O1 -8.09112E+03 -1.62026E+00

9.OOOOOE+OI 9.60443E-O1 -4.06358E+01 -9.78751E+03 -1.39187E+OO

1.ZOOOOE+02 6.75723E-Ol -1.60933E+01 -1.06064E+04 -1.18231E+00

1.50000E+02 4.65560E-01 1.02599E+00 -1.08088E+04 -9.93318E-01
1.80000E+02 3.07932E-Ol 1.26284E+01 -1.05862E+04 -8.25325E-01

2.1O000E+02 1.89330E-01 2.00873E+01 -1. 00822E+04 -6.77882E-01
2.40000E+02 1.00535E-01 2.44353E+01 -9.40433E+03 -5.49948E-01

2.70000E+02 3.47889E-02 2.64651E+01 -8.63342E+03 -4.40118E-01

3.OOOOOE+02 -1.30949E-02 2.67905E+01 -7.82920E+03 -3.46791E-01

3.30000E+02 -4.72070E-02 2.58860E+01 -7.03522E+03 -2.68294E-01 N

3.60000E+02 -7.08209E-02 2.41156E+01 -6.28254E+03 -2.02977E-O1

3.90000E+02 -8.65708E-02 2.17547E+01 -5.59271E+03 -1.49274E-01

4.20000E+02 -9.65741E-02 1.90076E+01 -4.98015E+03 -. 05748E-01

4.50000E+02 -1.02521E-01 1.60211E+Ol -4.45405E+03 -7.11239E-02

4.80000E+02 -1.05741E-01 1.28972E+01 -4.01991E+03 -4.43064E-02

5.100O0E+02 -1.07257E-01 9.70223E+OO -3.68075E+03 -2.4391ZE-02

5.40000E+02 -1.07826E-01 6.47599E+O0 -3.43801E+03 -. 06719E-OZ.

5.70000E+02 -1.07965E-O1 3.23914E+OO -3.29227E+03 -2.64266E-03

6.OOOOOE+02 -1.07978E-01 -1.12171E-12 -3.24368E+03 .OOOOOE+O0

6.30000E+02 -1.07965E-01 -3.23914E+O0 -3.29227E+03 -2.64266E-03

6.60000E+02 -1.07826E-01 -6.47599E+00 -3.43801E+03 -1.06719E-02

6.90000E+02 -1.07257E-O -9. 70223E+00 -3.68075E+03 -2.43912E-02

7.20000E+02 -1.05741E-O1 -1.28972E+O1 -4.01991E+03 -4.43064E-02

7.50000E+02 -1.02521E-01 -1.60211E+01 -4.45405E+03 -7.11239E-O2

7.80000E+02 -9.65741E-02 -1.90076E+01 -4.98015E+03 -1.05748E-01

8.10000E+O -8.65708E-02 -2.17547E+01 -5.59271E+03 -1.49274E-OI1

8.40000E+02 -7.08209E-02 -2.41156E+01 -6.28254E+03 -2.02977E-01

8.70000E+02 -4.72070E-02 -2.58860E+01 -7.03522E+03 -2.68294E-O1

9.00000E+02 -1.30949E-02 -2.67905E+O1 -7.82920E+03 -3.46791E-01

9.30000E+02 3.47889E-02 -2.64651E+O1 -8.63342E+03 -4.40118E-01

9.60000E+02 1.00535E-01 -2.44353E+01 -9.40433E+03 -5.49948E-01

9.90000E+02 1.89330E-O1 -2.00873E+O1 -1.00822E+04 -6.77882E-01

1.02OOOE+O3 3.07932E-01 -1.26284E+O1 -1.05862E+04 -8.Z5325E-O1

1.05000E+03 4.65560E-01 -1.02599E+00 -1.08088E+04 -9.93318E-01

1.08000E+03 6.75723E-01 1.60933E+01 -1.06064E+04 -1.18231E+00

i.11000E+03 9.60443E-01 4.06358E+01 -9.78751E+03 -1.39187E+00

1.14000E+03 1.36151E+00 7.54650E+01 -8.ar9l12E+03 -1.62026E+00

1.17000E+03 1.97805E+00 1.25559E+02 -5.14513E+03 -1.86392E+00

1.20000E+03 6.31804E+00 O0000E+O0 -1.24174E-10 -2.11667E+00

ro tabulate foundation pressures for a given interval: input

X-min, X-max, and number of increments(input 0,0,0 to STOP)

0. ,0. ,0 ." -' "
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Case ITT--Concentrated End Couples

4. Concentrated end couples of 500 kips/ft is applied at end of the low

beam as shown in the following example.

INPUT: Problem title (for echo check put $ in column 
one) .6

Sample problem for WES with moment on ends (kips,inches)

SELECT AN OPTION: 1 = Plane strain, 2 = Plane stress

INPUT: Young's modulus and Poisson's ratio for the half plane
300.,.2

INPUT: The length, the depth, and Young's modulus for the beam
1201. ,120. ,3000.

To define the foundation interaction points select: X-min, X-max,
the number of evenly spaced support points
and the width of the support in the direction of the beam axis -
0.,1200. .41,1.

For the external beam loading input: The
number of concentrated loads and the number of
linearly varying ramp loads
0,2

INPUT: The starting magnitude, starting position, end magnitude,
and end position for each ramp load
+40000.,0.,-40000.,3.
-40000.,1197.,40000.,1200.

Is the foundation flexibility matrix to be printed? (Y/N)

Is the foundation stiffness matrix to be printed? (Y/N)

A8* *
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*FOUNDATION FORCES AND DISPLACEMENTS *t

Index Position Reaction Displacement
Force in beam __

1 .OOOOOE+00 -1.20259E+02 2.03478E+00
2 3.OOOOOE+Ol -5.65107E+01 1.35781E+00
3 6.OOOOOE+O1 -2.42488E+01 7.97552E-01
4 9.OOOOOE+Ol -5.26440E+00 3.43477E-01
5 1. 20000E+02 6. 30331E+00 -1. 67818E-02
6 1.50000E+02 1.32117E+01 -2.95995E-01
7 1. 80000E+02 1. 70327E+01 -5 .06591E-01
8 2.10000E+02 1.87678E+01 -6.60201E-01
9 2.40000E+02 1.90987E+i01 -7.67416E-01

10 2.70000E+02 1.85073E+01 -8.37669E-01
11. 3.OOOOOE+02 1.73414E+01 -8.79207E-01
12 3.30000E+02 1.58539E+01 -8.99128E-01
13 3.60000E+02 1.42289E+01 -9.03448E-01
14 3.90000E+02 1.25997E+01 -8.97195E-01
15 4.20000E+02 1.10616E+01 -8.84506E-01
16 4.50000E+02 9.68173E+00 -8.68732E-01
17 4.80000E+02 8.50656E+00 -8.52528E-01
18 5.10000E+02 7.56735E+00 -8.37945E-01
19 5.40000E+02 6.88443E+00 -8.26498E-O1
20 5.70000E+02 6.47026E+00 -8.19225E-01
21 6.OOOOOE+02 6.33150E+00 -8.16735E-01
22 6.30000E+02 6.47026E+00 -8.19225E-01
23 6.60000E+02 6.88443E+00 -8.26498E-O1
24 6.90000E+02 7.56735E+00 -8.37945E-01
25 7.20000E+02 8.50656E+00 -8.52528E-01
26 7.50000E+02 9.68173E+00 -8.68732E-01
27 7.80000E+02 1.10616E+01 -8.84506E-01
28 8.10000E+02 1.25997E+01 -8.97195E-01
29 8.40000E+02 1.42289E+01 -9.03448E-01
30 8.70000E+02 1.58539E+01 -8.99128E-01
31 9.OOOOOE+02 1.73414E+01 -8.79207E-01
32 9.30000E+02 1.85073E+01 -8.37669E-01
33 9.60000E+02 1.90987E+01 -7.67416E-01
34 9.90000E+02 1.87678E+01 -6.60201E-01
35 1.02000E+03 1.70327E+01 -5.06591E-01
36 1.05000E+03 1.32117E+01 -2.95995E-01
37 l.08000E+03 6.30331E+00 -1.67818E-02
38 1.11000Ei+03 -5.26440E+00 3.43477E-01
39 1.14000E+03 -2.42488E+01 7.97552E-01
40 1.17000Ei.03 -5.65107E+01 1.35781E+00
41 1.20000E+03 -1.20259E+02 2.03478E+00

Residual shear error at right end: .OOOOOE+00
Residual moment error at right end: -4.51337E-11

To tabulate foundation pressures for a given interval: input
X-tuin, X-max, and number of increments(input 0,0,0 to STOP)
0.,1200.,40
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*~SUMMARY OF RESULTS FOR INTERFACE POINTS *

Position Interface Shear Moment Displacement__
Pressure

.OOOOOE+00 -8.01727E+00 .OOOOOE+00 .OOOOOE+00 2.03478E+00
3.OOOOOE+Ol -1.88369E+00 -1.48514E+02 5.70823E+04 1.35781E+00
6.OOOOOE+Ol -8.08294E-01 -1.88894E+02 5.19001E+04 7.97552E-01

V.9.OOOOOE.O1 -1.75480E-01 -2.03651E+02 4.59408E+04 3.43477E-01
1.20000E+02 2.10110E-01 -2.03131E+02 3.97957E+04 -1.67818E-02
1.50000E+02 4.40390E-01 -1.93374E+02 3.38222E+04 -2.95995E-01
1.80000E+02 5.67755E-01 -1.78252E+02 2.82335E+04 -5.06591E-01
2.10000E+02 6.25593E-01 -1.60351E+02 2.31479E+04 -6.60201E-01

*2.40000E+02 6.36623E-Ol -1.41418E+02 1.86201E+04 -7.67416E-01
2.70000E+02 6.16911E-01 -1.22615E+02 1.46619E+04 -8.37669E-01

*3.OOOOOE.OZ 5.78046E-01 -1.04691E+02 1.12566E+04 -8.79207E-01
3.30000E+02 5.28462E-01 -8.80932E+01 8.37046E+03 -8.99128E-01
3.60000E+02 4.74297E-01 -7.30518E+01 5.95938E+03 -9.03448E-01
3.90000E+02 4.19990E-01 -5.96375E+01 3.97515E+03 -8.97195E-01
4.20000E+02 3.68719E-01 -4.78069E+01 2.36925E+03 -8.84506E-01

*4.50000E+02 3.22724E-01 -3.74352E+01 1.09580E+03 -8.68732E-01
4.80000E+02 2.83552E-01 -2.83411E+01 1.13559E+02 -8.52528E-01
5.lOOOOE+02 2.52245E-01 -2.03041E+01 -6.12597E+02 -8.37945E-01

*5.40000E+02 2.29481E-01 -1.30782E+01 -1.11077E+03 -8.26498E-01
5.70000E+02 2.15675E-01 -6.40088E+00 -1.40140E+03 -8.19225E-01

*6.OOOOOE+02 2.11050E-01 1.84741E-12 -1.49690E+03 -8.16735E-01
6.30000E+02 2.15675E-01 6.40088E+00 -1.40140E+03 -8.l9225E-Of
6.60000E+02 2.29481E-01 1.30782E+01 -1.11077E+03 -8.26498E-01
6.90000E+02 2.52245E-01 2.03041E+01 -6.12597E+02 -8.37945E-01
7.20000E+02 2.83552E-01 2.83411E+01 1.13559E+02 -8.52528E-01
7.50000E+02 3.22724E-01 3.74352E+01 1.09580E+03 -8.68732E-01
7.80000E+02 3.68719E-01 4.78069E+01 2.36925E+03 -8.84506E-01

K.8.10000E+02 4.19990E-01 5.96375E+01 3.97515E+03 -8.97195E-1
8.40000E+02 4.74297E-01 7.30518E+01 5.95938E+03 -9.03448E-01I8.70000E+02 5.28462E-01 8.80932E+01 8.37046E+03 -8.99128E-Ol
9.OOOOOE+02 5.78046E-01 1.04691E+02 1.12566E+04 -8.79207E-01
9.30000E+02 6.16911E-01 1.22615E+02 1.46619E+04 -8.37669E-01

9.60000E+02 6.36623E-01 1.41.418E+02 1.86201E+04 -7.67416E-01
9.90000E+02 6.25593E-01 1.60351E+02 2.31479E+04 -6.60201E-01
1.02000E+03 5.67755E-01 1.78252E+02 2.82335E+04 -5.06591E-01
1.05000E+03 4.40390E-01 1.93374E+02 3.38222E+04 -2.95995E-01.
1.08000E+03 2.10110E-01 2.03131E+02 3.97957E+04 -1.67818E-02
1.11000E+03 -1.75480E-01 2.03651E+02 4.59408E+04 3.43477E-01

*1.14000E+03 -8.08294E-01 1.88894E+02 5.19001E+04 7.97552E-01
1.17000E+03 -1.88369E+00 1.48514E+02 5.70823E+04 1.35781E+00
1 .20000E+03 -8.01727E+00 3.60766E-12 -9.96564E-10 2.03478E+00

* To tabulate foundation pressures for a given interval: input
X-min, X-max, and number of increments(input 0,0,0 to STOP)

* ~0.,0.,0 ,*.
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5. The computer codes for Program I sample problems are shown on the 7

following pages.

l:$SSSSS MAIN
2:C
3:C Written for: The U.S. Corps of Engineers
4:C By: H.B. Wilson and L.H. Turcotte .,

5:C University of Alabama at Tuscaloosa .

6:C Date: September 1983%
7:C
8: IMPLICIT REAL*8 (A-H,O-Z) 4'

9: CHARACTER*1 TITL(80),ANS
10: LOGICAL ECHO
11: COMMON / BEAM /BLEN,XFIX.NFF(53),XF(53),NP,P(53),
12: & XP(53),NRWL(53),XL(53),WR(53),XR(53),
13: & EIB
14: COMMON / QTOTAL / XT(53),IFRSTDDH
15: COMMON / HAFPLA / EHAPL.POIHPL,TWOCHP,CAPA
16: COMMON / EQNS / NFM4AX,AHP(53,53),ABM(53,53),B(53)
17: COMMON / EQNS2 / ATOTL(53,53),IPIVOT(53),SCAL(53),ISTATE
18: COMMON / EQNS3 / AHPINV(53,53),DBM(53),SMALL.NODEI
19: DATA PI/ 3.141592653589793D0
20: DATA IRD, IPRT /0, 0/
21:C
22: NFMAX =53

23: ECHO = FALSE.
24: IFRST 1

26:C WRITE (IPRT,1O)

27: 10 FORMAT(//,5X,'*** FOUNDATION INTERACTION BETWEEN A BEAM
28: & /,5X,'*** AND AN ELASTIC HALF PLANE**I/
29: WRITE (IPRT,20)
30: 20 FORMAT(/, INPUT: Problem title (for echo check put S in column '

31: & tone)')
32: READ (ICRT,30) (TITL(I),I = 1,80)
33: 30 FORMAT(8A1)
34: IF (TITL(1) .EQ. '$') ECHO =.TRUE.
35: IF (ECHO) WRITE (IPRT.40) (TITL(I),I =2,80)

36: 40 FORMAT(lX,80Al)
37: WRITE (IPRT.50)
38: 50 FORMAT(/,' SELECT AN OPTION: 1 =Plane strain, 2 =Plane stress')
39: READ (ICRT,*) ISTATE
40: IF (ECHO) WRITE (IPRT,*) ISTATE
41: WRITE (IPRT,60)
42: 60 FORMAT(/,' INPUT: Young''s modulus and Poisson''s ratio for '

43: & 'the half plane')
44: READ (ICRT,*) EHAPLPOIHPL
45: IF (ECHO) WRITE (IPRT,*) EHAPL,POIHPL
46:C. .. .Define elastic constants
47: TWOGHP = EHAPL / (1.DO + POIHPL)
48:C...Plane strain
49: IF (ISTATE .EQ. 1) CAPA - 3.DO -4.DO POIHPL
50:C ... Plane stress
51: IF (ISTATE .EO. 2) CAPA -3.DO -POIHPL) / (.DO + POIHPL)

All
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52: SHRMOD =EHAPL .5D0 (l.DO + POIHPL)
53: WRITE (IPRT,70)
54: 70 FORMAT(/,' INPUT: The length, the depth, and Young''s modulus '

55: & 'for the beam')
56: READ (ICRT,O) BLEN,BDEP,EBEAN
57: IF (ECHO) WRITE (IPRT,*) BLEN.BDEP,EBEAM
58: EIB =EBEAM *(BOEP ** 3) / 12.DO

59: XFIX 1.IDO *BLEN60: WRITE (IPRT.80)
61: 80 FORMAT(/,' To define the foundation interaction points select: '

62: & 'X-min, X-max,',/,' the number of evenly spaced support',
63: & oints',/,' and the width of the support in the '

64: &'direction of the beam axis')
65: READ (ICRT,*) XMIN,XMAX,NF,WDTH
66: IF (ECHO) WRITE (IPRT,*) XMIN,XMAX,NF,WDTH
67: IF (NF .LE. NFMAX-2) GO TO 100
68: WRITE (IPRT,90) NFMAX-2
69: 90 FORMAT(/,' Maximum number of support points = ,3
70: & 'PROGRAM TERMINATED')
71: STOP'
72: 100 DF = (XMAX - XMIN) / (NF - 1)
73: HAFWID = O.5D0 * WDTH
74: ALP = (l.DO + CAPA) / (8.DO *HAFWID *SHRMOD *PI)

75: DO 110 I = ,NF
76: 110 XF(I) = XMIN + DF *(I - 1)
77: IF (BLEN .EQ. O.ODO) GO TO 180
78: WRITE (IPRT,120)
79: 120 FORMAT(/,' For the external beam loading input: The '/

80: & 'number of concentrated loads and the number of '/

81: & 'linearly varying ramp loads '

82: READ (ICRT,*) NP,NR
83: IF (ECHO) WRITE (IPRT,*) NP,NR
84: IF (NP .EQ. 0) GO TO 150
85: WRITE (IPRT,130)
86: 130 FORMAT(/,' INPUT: The magnitude and position of each applied '

*87: & 'force')
*88: DO 140 1I 1,NP

89: READ (ICRT,*) P(I),XP(I)
*90: IF (ECHO) WRITE (IPRT,*) P(I),XP(I)

91: 140 CONTINUE
92: 150 IF (NR .EQ. 0) GO TO 189

*93: WRITE (IPRT,160)
94: 160 FORMAT(/,' INPUT: The starting magnitude,, starting '

95: & position, end magnitude.',/,' and end position for '

96: & 'each ramp load') x
*97: DO 170 I = l,NR

98: READ (ICRT,*) WL(I),XL(I),WR(I),XR(I)
99: IF (ECHO) WRITE (IPRT,O) WL(I),XL(I),WR(I),XR.I)

100: 170 CONTINUE
* 101:C.. .Form equations and solve for the foundation equations
*102: 180 CALL SOLEQN(HAFWID,ALP)
*103: WRITE (IPRT,190)

104: 190 FORMAT(/,' Is the foundation flexibility matrix to be',
*105: & 'printed? (YIN)')
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106: READ (ICRT,30) ANS
107: IF (ECHO) WRITE (IPRT,*) AilS
108: IF (ANS .EQ. 'N' .OR. ANS .EQ. 'n') GO TO Z30
109: WRITE (IPRT,200)
110: 200 FORMAT(/,' The Foundation Flexibility Matrix is:',/)
111: DO Z10 I = 1,NF
112: 210 WRITE (IPRT,220) (AHP(I,J), J = 1,NF)
113: 220 FORMAT(1X,6(1PE12.4),/,(13X,5(1PE12.4)))
114: 230 WRITE (IPRT,240)
115: 240 FORMAT(/,' Is the foundation stiffness matrix to be printed? '

116: & '(Y/N)') '.

117: READ (ICRT,30) ANS
118: IF (ECHO) WRITE (IPRT,*) ANS
119: IF (ANS .EQ. 'N' .OR. ANS .EQ. 'W) GO TO 290
120: CALL INVERT(AHP,NF,NFMAX,IPIVOT,SCAL,IFLAG,AHPINV)
121: IF (IFLAG .NE. 2) GO TO 260
122: WRITE (IPRT,250)
123: 250 FORMAT(/,' The Foundation Flexibility Matrix is Singular '

124: & I'EXECUTION TERMINATED',!)
125: STOP
126: 260 WRITE (IPRT,270)
127: 270 FORMAT(/,' The Foundation Stiffness Matrix is:',/)
128: DO 280 I1 1,NF
129: 280 WRITE (IPRT,220) (AHPINV(I,J),J =1,NF)

130: 290 CONTINUE
131: WRITE (IPRT,300)
132: 300 FORMAT(/,3X,' ** FOUNDATION FORCES AND DISPLACEMENTS '

133: & 1/'Index',2X,'Position',8X,'Reaction',6X,
134: & 'Displacement' ,/,24X,'Force' ,11X,'in beam')
135: IF (SMALL .NE. O.DO) WRITE(IPRT,310)
136. 310 FORMAT(39X,'Crelativej')
137: SUMF - Q(BLEN,1)
138: SUMM = Q(BLEN,2)
139: DO 320 I=1,NF
140: SUMF =SUMF - F(I)
141: SUMM = SUMM - F(I) (BLEN-XF(I))
142: 320 WRITE(IPRT,330) I,XF(I),-F(I),DBM(I)
143: 330 FORMAT(I4,3(1PE13.5,3X))
144: WRITE(IPRT,340) SUMF,SUMM
145: 340 FORMAT(/,' Residual shear error at right end: ',1PE13.5,
146: & I'Residual moment error at right end: ',1PE13.5)
147: IF (SMALL .NE. O.DO) WRITE(IPRT,350) SMALL,NODEI
148: 350 FORMAT(/,' Displacements are relative to: ',lPEI3.5,
149: & 'at node * ,13)

150:C... .Compute shear and moment at interface points and output results
151: 360 WRITE(IPRT,370)
152: 370 FORMAT(/,' To tabulate foundation pressures for a given '

153: & 'interval: input',/,' X-min, X-max, and number '

154: & 'of increments(input 0,0,0 to STOP)')
155: READ(IRD,*) XXL,XXR.NSEG
156: IF (XXL .EQ. XXR) STOP
157: DX = (XXR-XXL) / DBLE(NSEG)
158: WRITE(IPRT,380)
159: 380 FORMAT(/,15X,'* SUMMARY OF RESULTS FOR INTERFACE POINTS '
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* ~161: & .4161: & 4X, 'Position', 7X, 'Interface' ,8X, 'Shear' ,9X, 'Moment' ,
162: & 6X,'Displacement')
163: IF (SMALL .NE. O.ODO) WRITE(IPRT,390)
164: 390 FORMAT(19X,'Pressure',36X,'[relative]')
165: IF (SMALL .EQ. O.ODO) WRITE(IPRT,400)
166: 400 FORMAT(19X,'Pressure')
167: DO 410 I = 0,NSEG
168: XX= XXL + I 0 DX
169: QT1 = QTOTL(XX,I)
170: QT2 = QTOTL(XX,2)
171: QT4 QTOTL(XX,4)
172: FPR FPRES(XX)
173: 410 WRITE(IPRT,420) XX,FPR,QTI,QT2,QT4
174: 420 FORMAT(1X,5(1PE13.5,2X))
175: GO TO 360
176: END
177:CSSSSSS$SS FS
178: REAL*8 FUNCTION FS(X,XBEGIN,NPOWR)
179:C...Singularity function
180: IMPLICIT REAL88 (A-H,O-Z)
181: FS = O.ODO
182: D X - XBEGIN
183: IF (D .LT. O.ODO) RETURN
184: IF (NPOWR .GT. 0) GO TO 10
185: FS = 1.DO
186: RETURN
187: 10 FS = D *' NPOWR
188: RETURN
189: END
190:CSSSSS$SSSS RAMP
191: REAL*8 FUNCTION RAMP(X,XLWL,XR,WR,EI,ID)
192:C... Load and deflection quantities for ramp load on a beam .
193: IMPLICIT REAL*8 (A-H,O-Z) I
194: RAMP = O.ODO
195: DL = X - XL
196: IF (DL .LT. O.ODO) RETURN
197: DR X -XR
198: S= (WR- WL) / (XR- XL)
199:C
200: GO TO (10,20,30,40,50),ID+I
201:C
202:C.. .Load per unit length
203: 10 RAMP = WL * FS(X,XL,O) - WR * FS(X.XR,0)
204: IF (S .EQ. O.ODO) RETURN
205: RAMP = RAMP + S " (FS(X,XL,1) - FS(X,XR,I))
206: RETURN
207: .. Shear
208: 20 RAMP WL * FS(XXL,1) - WR * FS(X,XR,1)
209: IF (S .EQ. 0.ODO) RETURN
210: RAMP = RAMP + 0.5DO * S * (FS(X,XL,2) - FS(X,XR,2))
211: RETURN
212:C...Moment
213: 30 RAMP 0.5DO * (WL * FS(XXL,2) - WR * FS(X,XR,2))
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214: IF (S .EQ. O.ODO) RETURN
215: RAMP = RAMP + S / 6.ODO * (FS(X,XL,3) - FS(X,XR,3))
216: RETURN
217:C... Slope
218: 40 RAMP = (WL * FS(XXL,3) - WR * FS(X,XR,3)) / 6.ODO .1.
219: IF (S .EQ. O.ODO) GO TO 60
220: RAMP = RAMP + S / 24.ODO * (FS(X,XL,4) - FS(X,XR,4))
221: GO TO 60
222:C... Deflection
223: 50 RAMP = (WL * FS(X,XL,4) - WR * FS(X,XR,4)) / 24.ODO
224: IF (S .EQ. O.ODO) GO TO 60
225: RAMP = RAMP + S /120.ODO *(FS(XXL,5) -FS(X,XR,5))

226: 60 RAMP = RAMP / EI
227: RETURN
228: END
229:CS$$SSSSSSS FUNIT
230: REAL*8 FUNCTION FUNIT(X,POSITN,EI,ID)
231:C...Load and deflection quantities for concentrated load on a beam
232: IMPLICIT REAL*8 (A-H,O-Z)
233: FUNIT = O.ODO .4.
234: IF (ID .EQ. 0) RETURN
235: D = X - POSITN
236: IF (D .LT. O.ODO) RETURN
237: GO TO (10,20,30,40),ID
238:C... Shear
239: 10 FUNIT FS(X,POSITN,O)
240: RETURN
241:C...Moment
242: 20 FUNIT = FS(X,POSITN,1)
243: RETURN
244:C... Slope
245: 30 FUNIT FS(X,POSITN,2) * 0.5DO / El .

246: RETURN
247:C... Deflection
248: 40 FUNIT = FS(XPOSITN,3) / (6.ODO * EI)
249: RETURN
250: END
251:CS$SSSSSSS Q
252: REAL*8 FUNCTION Q(X,ID)
253:C...Loading and deflection contribution of external concentrated
254:C...and ramp loads
255: IMPLICIT REAL*8 (A-HO-Z)
256: COMMON / BEAM / BLEN,XFIX,NFF(53),XF(53),NP,P(53),
257: & XP(53),NR,WL(53),XL(53),WR(53),XR(53),
258: & EIB
259: Q = O.ODO
260: IF (NP .EQ. 0) GO TO 20
261: DO 10 J = 1,NP
262: 10 Q = Q + P(J) * FUNIT(X,XP(J),EIB,ID)
263: 20 IF (MR .EQ. 0) RETURN
264: DO 30 J = I,NR
265: 30 Q Q + RAMP(X,XL(J),WL(J),XR(J),WR(J),EIB,ID)
266: RETURN
267: END
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268:CSSSSSSSSS QTOTL
269: REAL*8 FUNCTION QTOTL(X,ID)
270:C.. .Total loading and deflection quantities
271: IMPLICIT REAL*8 (A-H,O-Z)
272: COMMON / BEAM / BLEN,XFIX,NF,F(53),XF(53),NP,P(53),V
273: & XP(53),NR,WL(53),XL(53),WR(53),XR(53),
274: & EIB
275: COMMON / QTOTAL / XT(53),IFRST,D,DH
276: COMMON / EQNS3 / AHPINV(53,53),DBM(53),SMALL,NODEI
277:C..Initialize array XT on first entry
278: IF (IFRST .EQ. 0) GO TO 20

*. 279: IFRST =0 
280: Ni = NF - 1
281: XT(1) = XF(1)
282: XT(NF+l) = XF(NF)
283: D = (XF(NF)-XF(l))/DBLE(Nl)
284: DH = O.5DO * D
285: DO 10 1 = 2, NF
286: 10 XT(I) = XF(I) - DH
287:C ... "
288: 20 IF (ID .GT. 2) GO TO 50
289: XLT = XT(1)
290: XRT = XT(2)

" 291: WT = 2.ODO * F(l)
292: QT = RAMP(X,XLT,WT,XRT,WT,EIBID)

" 293: DO 30 I = 2, Ni
294: XLT = XT(I)
295: IF (XLT .GE. X) GO TO 40
296: XRT XT(I+1)
297: WT = F(I)
298: 30 QT = QT + RAMP(X,XLT,WT,XRT,WT,EIB,ID)
299: XLT = XT(NF)
300: IF (X .LE. XLT) GO TO 40
301: XRT = XT(NF+I)
302: WT = 2.ODO * F(NF)
303: QT = QT + RAMP(X,XLTWT,XRT,WT,EIB,ID)
304: 40 QTOTL = Q(X,ID) - QT / D
305: RETURN
306:C...Interpolate lineraly for slope or deflection
307: 50 ID2 = ID - 2
308: QTOTL = FLNTRP(X,XF,DBM,NF,ID2)
309: RETURN
310: END
311:CSS$SS5S$S FPRES
312: REAL*8 FUNCTION FPRES(X)
313:C...Function to determine piecewise constant foundation pressure
314: IMPLICIT REAL*8 (A-HO-Z)
315: COMMON / QTOTAL / XT(53),IFRSTD,DH
316: COMMON / BEAM / BLEN,XFIXNF,F(53),XF(53),NP,P(53)-
317: & XP(53),NR,WL(53),XL(53),WR(53),XR(53),
318: & EIB
319: IF (X .GT. XT(2)) GO TO 10
320:C...Pressure in short left segment
321: FPRES = 2.DO * F(1)
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322: GO TO 50
323: 10 IF (X .LT. XT(NF)) GO TU 20
324:C.. .Pressure in right short segment
325: FPRES = 2.DO * F(NF)
326: GO TO 50
327:C...Determine segment containing X ,
328: 20 DO 30 I = 3,NF '

329: ISV = I
330: IF (XT(I) .GE. X) GO TO 40
331: 30 CONTINUE
332: 40 FPRES = F(ISV-1)
333: 50 FPRES = -FPRES /D
334: RETURN
335: END
336:C$SSSSSSSSS FACTR
337: SUBROUTINE FACTR (A,N,NMAX,IPIVOT.SCAL,IFLAG)
338:C. Perform triangular factorization of matrix a -

339:C...using scaled row pivoting .'
340:C... IFLAG = 1 means normal return
341:C... = 2 means matrix is singular
342: IMPLICIT REAL*8 (A-H,O-Z)
343: DIMENSION A(NMAX,N), IPIVOT(N), SCAL(N)
344: IFLAG = 1
345:C...Initialize IPIVOT and SCAL
346: DO 20 I = 1,N
347: IPIVOT(I) = I
348: ROWMAX = O.ODO
349: DO 10 J 1 I,N
350: 10 ROWMAX = DMAXI(ROWMAX,DABS(A(I,J)))
351: IF (ROWMAX.EQ.O.ODO) GO TO 50
352: 20 SCAL(I) = ROWMAX
353:C... Perform Gauss reduction
354: NMI = N-I
355: IF (NM1.EQ.O) RETURN
356: DO 40 K = I,NMI
357: J = K
358: KP1 =K+
359: IP = IPIVOT(K)
360: COLMAX = DABS(A(IP,K))/SCAL(IP)
361: DO 30 I = KPI,N
362: IP = IPIVOT(I)
363: AWIKOV = DABS(A(IP,K))/SCAL(IP)
364: IF (AWIKOV.LE.COLMAX) GO TO 30
365: COLMAX = AWIKOV
366. J = I
367: 30 CONTINUE
368: IF (COLMAX.EQ.O.ODO) GO TO 50
369: IPK = IPIVOT(J)
370: IPIVOT(J) = IPIVOT(K)
371: IPIVOT(K) = IPK
372: DO 40 1 = KPI,N
373: IP = IPIVOT(I)
374: A(IP,K) = A(IP,K)/A(IPK,K)
375: RATIO -A(IP,K)

A17

-e . 7. ."-.".-.
-.. .. . - . ". - .. .•. . . . . -. "..... ...- - ...- - *." <.'t °- - .-. - .. . -- ', ' ,-.'. -. '. '° ."



.. -. 1- 0-

376: DO 40 J = KP1,N
377: 40 A(IP,J) a RATIO*A(IPK,J)+A(IP,J)
378: IF (A(IP,N).EQ.O.ODO) GO TO 50
379: RETURN Nw

* 380: 50 IFLAG - 2
381: RETURN
382: END
383:CS$$SSSSSS BAKSUB
384: SUBROUTINE BAKSUB (AN,NMAX,B,IPIVOT,X)
385:C...Solve simultaneous equations AX = B where matrix A has
386:C...been subjected to factorization by SUBROUTINE FACTR

*387: IMPLICIT REAL*8 (A-H,0-Z)
388: DIMENSION A(NMAX,N), B(N), IPIVOT(N), X(N)
389: IF (N.GT.1) GO TO 10
390: X(1) = B(1)/A(I,l)
391: RETURN
392: 10 IP = IPIVOT(1)
393: X(1) = B(IP)
394: DO 30 K a 2,N
395: IP = IPIVOT(K)
396: KM1 = K-I
397: SUM f O.ODO
398: DO 20 J = 1,KMI
399: 20 SUM = A(IP,J)*X(J)+SUM
400: 30 X(K) = B(IP)-SUM .
401: X(N) = X(N)/A(IP,N)
402: K = N
403: DO 50 NPIMK = 2,N
404: KPI = K

405: K = K-I
406: IP = IPIVOT(K)
407: SUM = .ODO
408: DO 40 J = KP1,N
409: 40 SUM = A(IP,J)*X(J)+SUM

410: 50 X(K) = (X(K)-SUM)/A(IP,K)
" 411: RETURN

412: END
" 413:CSSS$SSSSSS INVERT

414: SUBROUTINE INVERT(A,N,NMAX,IPIVOT,SCAL,IFLAG,AINV)
415:C... IFLAG indicates singular matrix
416: IMPLICIT REAL*8 (A-H,O-Z)
417: DIMENSION A(NMAX,1),AINV(NMAX,1),IPIVOT(1),SCAL(1)
418: CALL FACTR(AN,NMAX,IPIVOT,SCAL;IFLAG)
419: IF (IFLAG .EQ. 2) RETURN

- 420: DO 10 J = 1,N
* 421: 10 SCAL(J) = 0.ODO

422: DO 20 I = 1,N
423: SCAL(I) = 1.ODO
424: CALL BAKSUB(A,N,NMAX,SCAL,IPIVOT,AINV(1,I))
425: SCAL(I) = O.ODO
426: 20 CONTINUE

. 427: RETURN
428: END

*429:C$$S$$SSSSS SOLEQN
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430: SUBROUTINE SOLEQN(HAFWID,ALP)
431:C.. .This subroutine forms the flexibility matrices for a beam
432:C...and for a half plane subjected to several concentrated
433:C...loads. These matrices are then combined and the resulting "
434:C...simultaneous equations are solved for the interaction forces.
435: IMPLICIT REAL'8 (A-H,O-Z)
436: COMMON / BEAM / BLEN,XFIX,NF,F(53),XF(53),NP,P(53), .*

437: & XP(53),NR,WL(53),XL(53),WR(53),XR(53),
438: & 'EIB
439: COMMON / HAFPLA / EHAPLPOIHPL,TWOGHP,CAPA
440: COMMON / EQNS / NFMAX,AHP(53,53),ABM(53,53),B(53)
441: COMMON / EQNS2 / ATOTL(53,53),IPIVOT(53),SCAL(53),ISTATE
442: COMMON / EQNS3 / AHPINV(53,53),DBM(53),SMALL,NODEI
443: DATA IPRT/ 0 /
444: NFl = NF + 1
445: NF2 = NF + 2
446:C... Define some scaling factors
447: SCALl = BLEN * 3 / EIB '

448: SCAL2 = BLEN " 2 / EIB -
449:C ...Form influence for half plane
450: DO 10 I = I,NF
451: DO 10 J = 1,NF
452: 10 AHP(I,J) = FORIGN(XF(I)-XF(J),HAFWID,XFIX,ALP)
453:C...Form beam influence if requested
454: IF (BLEN .EQ. O.ODO) RETURN
455: DO 20 I = 1,NF
456: DO 20 J = I,NF
457: 20 ABM(I,J) = FS(XF(I),XF(J),3) / (6.ODO * EIB)
458:C...Form right side vector for applied beam loads
459: DO 30 I = INF .--.

460: 30 B(I)=Q(XF(I),4)
461:C...Form combined influence ,'. ,
462: DO 40 1 = INF
463: DO 40 J = I,NF
464: 40 ATOTL(I,J) = AHP(I,J) + ABM(I,J)
465:C... Define additional static equilibrium equations
466: DO 50 J = I,NF
467: ATOTL(J,NF1) = -SCALI
468: ATOTL(J,NF2) = - XF(J) * SCAL2
469: ATOTL(NF1,J) = I.ODO
470: 50 ATOTL(NF2,J) = BLEN - XF(J)
471: ATOTL(NF1,NFI) = O.ODO '- ..'
472: ATOTL(NFI,NF2) = O.ODO
473: ATOTL(NFZ,NF1) = O.ODO
474: ATOTL(NF2,NF2) = O.ODO
475: B(NF1) = Q(BLEN,l)
476: B(NF2) = Q(BLEN,2)
477:C... Solve for the interaction forces
478: CALL FACTR(ATOTL,NF2,NFMAX,IPIVOTSCAL,IFLAG) V.'*
479: IF (IFLAG .NE. 2) GO TO 70
480: WRITE (IPRT,60)
481: 60 FORMAT(/,' COMBINED STIFFNESS MATRIX IS SINGULAR',/,
482: & ' EXECUTION IS TERMINATED')
483: STOP ' '
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484:C...Compute the forces at interaction points

485: 70 CALL BAKSUB(ATOTL,NF2,NFMAX,B,IPIVOT,F)-'j,
486:C...Compute left end slope and displacement
487: F(NF2) = F(NF2) * SCAL2
488: F(NFl) = F(NFl) * SCALl

489:C...Compute the displacements at interaction points
490: DO 90 I = 1,NF
491: DBMI = B(I) + F(NF1) + F(NF2) * XF(I)
492: DO 80 J = 1,NF
493: 80 DBMI = DBMI - ABM(I.J) * F(J)

494: 90 DBM(I) = DBMI
495:C...Find smallest and largest displacement in beam
496: BIG = +1.D20

497: SMALL = -1.D20
498: DO 100 I = 1,NF
499: IF( DBM(I) .GT. SMALL ) THEN
500: SMALL = DBM(I)
501: NODEI = I
502: ENDIF
503: IF( DBM(I) .LT. BIG ) THEN
504: BIG = DBM(I)
505: ENDIF
506: 100 CONTINUE
507:C...Make all displacements relative to SMALL=O if displacements do
508:C.. .not change sign
509: IF( BIG*SMALL .LT. O.DO ) SMALL a O.DO
510:C...Shift all displacements by value of SMALL
511: DO 110 1 =l,NF
512: 110 DBM(I) = DBM(I) - SMALL
513: RETURN
514: END
515:CSSSSSSSSSS FORIGN
516: REAL*8 FUNCTION FORIGN(X,A,XFIX,ALP)
517:C...Force at origin
518:C...A is the half width
519: IMPLICIT REAL*8 (A-H,O-Z)
520: F(T) = ALP*((T-A)*DLOG(DABS(T-A))-(T+A)*DLOG(DABS(T+A)))
521: Z = DABS(X)
522: FORIGN = F(Z)-F(XFIX)
523: RETURN
524: END
525:CSSSSS$SSSS FLNTRP

526: REAL*8 FUNCTION FLNTRP(X,U,V,NDFTS,ITYP).
527:C...Function for linear interpolation on tabular data

528:C...ITYP=l gives slope, ITYP=2 gives function value
529: IMPLICIT REAL*8 (A-HO-Z)
530: DIMENSION U(1),V(1)
531: IF (X .GT. U(2)) GO TO 10
532: K2 = 2
533: GO TO 40
534: 10 IF (X .LT. U(NDPTS-1)) GO TO 20
535: K2 = NDPTS
536: GO TO 40
537: 20 K2 2
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538: 30 K2 =K2 + 1
539: IF (X .GT. U(K2)) GO TO 30
540: 40 K). = K2 - 1
541: IF (DABS(U(Kl)-U(K2)) .GT. O.ODO) GO TO 50
542: FLNTRP = O.5D0 V(X1) +. O.5DO * V(K2)
543: RETURN
544: 50 IF (ITYP.EQ.1) FLNTRP = (V(K2)-V(K1)) / (U(K2)-U(Kl))
545: IF (ITYP.EQ.2)
546: & FLNTRP =V(K1) + (V(K2)-V(K1)) (X-U(K1)) /(U(K2)-U(K1))
547: RETURN
548: END
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APPENDIX B: PROGRAM II--TWO-DIMENSIONAL STIFFNESS MATRIX GENERATION
FOR A HALF-PLANE OR A SYMMETRICALLY LOADED HALF-SPACE

1. Program II generalizes the flexibility and stiffness matrix formula-

tion used in Program I. For problems considering only vertical loads, stiff-

ness and flexibility matrices can be computed for the half-plane in plane

strain or plane stress. An analogous formulation for a three-dimensional beam

having a finite width and resting on a half-space is also included. A more

significant addition to earlier results is that stiffness matrices for the

half-plane subjected to surface loads involving horizontal components, verti-

cal components, and couples can be obtained. Numerical results are shown for

a simple case involving four support points, with the computer code immedi-

ately following.
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2. On the following pages is a two-dimensional plane-strain analysis of

a sample problem with vertical surface loads.

Is data to be echo printed? (Y/N)
4

Is the program explanation to be printed? (Y/N)
Y

This program determines the two-dimensional stiffness
matrix for a series of loads applied along the X-axis
on the surface of a half-plane or a half-space.
Solutions based on two-dimensional plane strain, two-di-
mensional plane stress, or three-dimensional loading can
be obtained. When a plane stress or plane-strain condition
is considered, two types of loading can be applied
) a series of vertical loads can be applied at a

specified series of points,
2) a series of horizontal loads, vertical loads, and

couples can be applied.
An influence function is used which computes the
deflection at any position due to a unit load applied at
the origin. For plane strain, a load of unity per unit of
thickness is distributed uniformly between X=-.5*A and
X=.5*A. For the three-dimensional loading, a unit load is
distributed uniformly over a rectangular zone bounded by
X=-.5*A, X=.5*A, Z=-.5B, Z=.5*B where the Z direction is
measured normal to the XY plane. The elements of the stiff-
ness matrix depend on E (Young's modulus), NU (Poisson's

, ratio), the dimension parameters A and B, and the loading
positions X(l),...,X(N). The elastic constants enter only
from a multiplicative factor which is proportional to E
for plane stress or proportional to E/(l.-NU**2) for both
plane strain and three-dimensional loading.

Input values for Young's modulus
e nd Poisson's ratio
3.E5,.2

Select the type of loading condition
1 = Plane strain

• .2 = Plane stress
3= Three dimensional loading

For a plane strain or plane stress condition, identify the
The type of surface loading 1'
1 = vertical surfaces loads only
2 = horizontal loads, vertical loads, and couples

How are the loading positions specified?

,% .
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1 = Take N evenly spaced positions between -...-

XMIN and XMAX
2 z Position coordinates X(l),...,X(N) are ,

input by the user

Input XMIN, XMAX and the number of ,. .*

evenly spaced loading points
0., 100. ,3

Loading positions are
I X(I)

1 .0000
2 50.0000

3 100.0000

For a plane strain or plane-stress solution
input the loading zone width A (measured in the X direction)
and the position coordinate B at which zero displacement is imposed
.1,110. -.---.

Select compute option: '

1 = compute both flexibility and stiffness matrices
2 = compute flexibility.matrix only

Select a print option:
1 = print flexibility matrix only
2 = print stiffness matrix only
3 = print both matrices

3

The flexibility matrix elements on and .,
below the main diagonal are shown below: ,. ,

1.772E-05
1.606E-06 1.772E-05
1.942E-07 1.606E-06 1.772E-05 .

The stiffness matrix elements on and
below the main diagonal are shown below:

5.692E+04
-5.146E+03 5.738E+04
-1.572E+02 -5.146E+03 5.692E+04

Problem analysis is completed

B. .
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3. The solution for a second plane-strain two-dimensional problem with

horizontal loads, vertical loads, and couples follows.

Is data to be echo printed? (Y/N)
N

* Is the program explanation to be printed? (Y/N)
N

Input values for Young's modulus
and Poisson's ratio
3.E5,.2 .'-"

Select the type of loading condition
I = Plane strain
2 = Plane stress
3 = Three dimensional loading

For a plane strain or plane stress condition, identify the
the type of surface loading
1 1 = vertical surfaces loads only
2 = horizontal loads, vertical loads, and couples

* 2

How are the loading positions specified?
1 = Take N evenly spaced positions between

XMIN and XMAX

2 = Position coordinates X(1),... ,X(N) are
input by the user

1

Input XMIN, XNAX and the number of
evenly spaced loading points
0.,100. ,3

" Loading positions are
- I X(I)
. 1 .0000

- 2 50.0000
3 100.0000

For a plane strain or plane stress solution
input the loading zone width A (measured in the X direction)
and the position coordinate B at which zero displacement is imposed
S.1,110.

Select compute option: -
1 = compute both flexibility and stiffness matrices
2 = compute flexibility matrix only
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Select a print option:
1 = print flexibility matrix only
2 = print stiffness matrix only
3 = print both matrices

3

The flexibility matrix elements on and
below the main diagonal are shown below: '-

1. 772E-05
.OOOE+O0 1.772E-05

2.400E-05 .OOOE+O0 9.600E-04
1.606E-06 -1.200E-06 .OOOE+O0 1.772E-05
1.200E-06 1.606E-06 4.074E-08 .OOOE+O0 1.772E-05
.OOOE+O0 -4.074E-08 -9.600E-1O 2.400E-05 .OOOE+O0 9.600E-04

1.942E-07 -1.200E-06 .OOOE+O0 1.606E-06 -1.200E-06 .OOOE+O0
I. 772E-05

1.200E-06 1.942E-07 2.037E-08 1.200E-06 1.606E-06 4.074E-08
.OOOE+O0 1.772E-05

.OOOE+O0 -2.037E-08 -2.400E-1O .OOOE+O0 -4.074E-08 -9.600E-IO
2.400E-05 .OOOE+O0 9.600E-04

The stiffness matrix elements on and
below the main diagonal are shown below:

5.942E+04
-1.237E+01 5.738E+04
-1.485E+03 5.278E-01 1.079E+03
-5.303E+O3 3.739E+03 1.327E+02 5.994E+04
-3.749E+03 -4.937E+03 9.137E+01 5.073E-14 5.785E+04
1.327E+02 -9.102E+01 -3.319E+00 -1.498E+03 1.801E-15 1.079E+03

-4.399E+02 3.324E+03 1.084E+01 -5.303E+03 3.749E+03 1.327E+02
5. 942E+04

-3.324E+03 -4.334E+02 8.210E+01 -3.739E+03 -4.937E+03 9.102E+01
1.237E+01 5.738E+04

1.084E+O -8.210E+O1 -2.668E-01 1.327E+02 -9.137E+01 -3.319E+O0
-1.485E+03 -5.278E-01 1.079E+03

Problem analysis is completed .. _

A

41

B5

.5......

*5III5S:



4. The computer code for Program II sample problems is printed on the

following pages.

1:CSSSSSS$$S$ MAIN

3:C ... Program to determine foundation stiffness matrix
4:C ...
5:C ... Written by: Howard Wilson and Louis Turcotte OL
6:C... University of Alabama at Tuscaloosa
7:C... For: U.S. Army Corps of Engineers, WES
8:C...Date: September 1983
9:C...

10: IMPLICIT REAL*8 (A-H,O-Z)
11: LOGICAL PRNT
12: CHARACTER*1 ANS
13: COMMON /ONE/ FLEX(60,6O),STIF(6O,60)
14: COMMON /TWO/ X(6O),STOR(60),ISTOR(60),FLXSTO(60,60)
15: DATA IRD/O/,ICRT/O/, PRNT/. FALSE./,NMAX/60/
16: WRITE(ICRT,lO)
17: 10 FORNAT(/.
18: &5X,** TWO-DIMENSIONAL STIFFNESS MATRIX GENERATION **'9/9
19: &5X,** FOR A HALF-PLANE OR A SYMMETRICALLY ,,.~
20: &5X,** LOADED HALF-SPACE
21: WRITE(ICRT,20)
22: 20 FORMAT(/,' Is data to be echo printed? (Y/N)')
23: READ(IRD.30) ANS
24: 30 FORMAT(A1)
25: IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'y') PRNT=.TRUE.
26: IF (PRNT) WRITE(ICRT,40) ANS
27: 40 FORMAT(1X,Al)
28: WRITE(ICRT,50)
29: 50 FORMAT(/,' Is the program explanation to be printed? (YIN)') -.-

30: READ(IRD.30) ANS
31: IF (PRNT) WRITE(ICRT,40) ANS
32: IF (ANS .NE. 'Y' .AND. ANS .NE. 'y') GO TO 100
33: WRITE(ICRT,60)
34: 60 FORMAT(/,
35: &lX,' This program determines the two-dimensional stiffness' ./,
36: &lX,'matrix for a series of loads applied along the X-axis',/,
37: &1X,'on the surface of a half-plane or a half-space.',/,
38: &lX,'Solutiona based on two-dimensional plane strain, two-di-',/,
39: &lX,'mensional plane stress, or three-dimensional loading can',/,
40: &1X,'be obtained. When a plane stress or'plane strain condition')
41: WRITE(ICRT,70)
42: 70 FOR.MAT(
43: &lX,'is considered, two types of loading can be applied' ,/,
44: &1X,'1) a series of vertical loads can be applied at a',/,
45: &lX,' specified series of points,',/,
46: &lX,'2) a series of horizontal loads, vertical loads, and',/,
47: &1X,' couples can be applied.',/,
48: &1X,'An influence function is used which computes the')
49: WRITE(ICRT,80)
50: 80 FORMAT(%
51: &lX,'deflection at any Position due to a unit load applied at',/,%
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52: &IX,'the origin. For plane strain, a load of unity per unit of',/,

53: &lX,'thickness is distributed uniformly between X=-.5*A and',/,
54: &1X, 'X=.5*A. For the three-dimensional loading, a unit load is' ,/,
55: &lX,'distributed uniformly over a rectangular zone bounded by',/,
56: &1X,'X=-.5*A, X=.5*A, Z=-.5*B, Z=. 5*B where the Z direction is',/,
57: &1X,'measured normal to the XY plane. The elements of the stiff-')
58: WRITE(ICRT,9O)
59: 90 FORIIAT
60: &1X,'ness matrix depend on E (Young''s modulus), NU (Poisson''s',/,
61: &lX,'ratio), the dimension parameters A and B, and the loading',
62: &lX,'positions X(1),...,X(N). The elastic constants enter only',/,
63: &lX,'Erom a multiplicative factor which is proportional to E',/,
64: &lX,'for plane stress or proportional to E/(1.-NU**2) for both',!,
65: &lX,'plane strain and three-dimensional loading.')
66: 100 W'RITE(ICRT.1O)
67: 110 FORMAT(/,' Input values for Young''s modulus',!,
68: & ' and Poisson' s ratio')
69: READ(IRD,*) E,POIS
70: IF (PRNT) WRITE(ICRT,120) E,POIS
71: 120 FORMAT(lX,lPE11.5,F7.4)
72: WRITE(ICRT,130)
73: 130 FORMAT(/,' Select the type of loading condition',!,
74: V' 1 = Plane strain' ,/,
75: V' 2 = Plane stress',!,
76: V' 3 = Three dimensional loading')
77: RFAD(IRD,*) ITYPE
78: IF (PRNT) WRITE(ICRT,140) ITYPE
79: 140 FORMAT(1X,12)
80: IF (ITYPE .EQ. 3) GO TO 160
81: WRITE(ICRT,150)
82: 150 FORMAT(/,
83: V' For a plane strain or plane stress condition, identify the' ,/,
84: &' the type of surface loading'
85: V' 1 = vertical surfaces loads only',!,
86: V' 2 = horizontal loads, vertical loads, and couple-s') A;

87: ILOAD = 0
88: READ(IRD,*) ILOAD
89: IF (PRNT) WRITE(lCRT,140) ILOAD ,

90: 160 WRITE(ICRT,170)
91: 170 FORMAT/,' How are the loading positions specified?',/,
92: V' 1 Take N evenly spaced positions between' ,/,
93: &' XMIN and XMAX',/,
94: V' 2 = Position coordinates X(1),...,X(N) are',!,
95: V' input by the user')
96: READ(IRD,') IOPT
97: IF (PRNT) WRITE(ICRT,140) IOPT
98: IF (IOPT .EQ. 2) Go TO 240
99: WRITE(ICRT,180)

100: 180 FORMAT(/,' Input XMIN, XMAX and the number of',!,
101: V' evenly spaced loading points')
102: READ(IRD,*) XMIN,XMAX,N
103: IF (PRNT) WRITE(ICRT,190) XMIN,XMAX,N
104: 190 FORMAT(1X.F1O.4,',',FlO.4,',',13)
105: D =(XNAX-XMIN) /(N-i)
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106: DO 200 1=1,N .p.
107: 200 X(I) = XMIN + D ' (I-I) '
108: WRITE(ICRT,210)
109: 210 FORMAT(/,' Loading positions are :,/,' I',5X,'X(I)')
110: DO 220 I=1,N
Ill: 220 WRITE(ICRT,230) I,X(I)
112: 230 FORMAT(lX,I3,FIO.4)

* 113: GO TO 270
114: 240 WRITE(ICRT,250)
115: 250 FORMAT(/,' Input N and X(1),...,X(N)')
116: READ(IRD,*) N,(X(K),K=1,N)
117: IF (PRNT) WRITE(ICRT,260) N,(X(K),K=l,N)
118: 260 FORMAT(1X,I3,/,
119: & 7(FO.4,',',FO.4,','JFl.4,.,'.F10.4,',',F10.4,',',F10.4,/))
120: 270 IF(ITYPE.EQ.3) GO TO 300
121: WRITE(ICRT,280)
122: 280 FORMAT(/,' For a plane 3train or plane stress solution',/, 7..
123: &' input the loading zone width A (measured in the X direction)',
124: &/, and the position coordinate B at which zero displacement', . .
125: &' is imposed')
126: READ(IRD,*) A,B
127: IF (PRNT) WRITE(ICRT,290) A,B
128: 290 FORMAT(lX,F1O.4,',',FlO.4)
129: GO TO 315
130: 300 WRITE(ICRT,310)
131: 310 FORMAT(/,' For the dimensions of loading input the',/,
132: &' X-width and the Z-width of the loading zone')
133: READ(IRD,*) A,B
134: IF (PRNT) WRITE(ICRT,290) A,B
135: 315 WRITE(ICRT,320)
136: 320 FORMAT(/,' Select compute option:',/,
137: & ' 1 = compute both flexibility and stiffness matrices',/,
138: & ' 2 = compute flexibility matrix only')
139: READ(IRD,*) NOSTIF
140: IF (PRNT) WRITE(ICRT,140) NOSTIF
141: NOSTIF = NOSTIF - 1
142: 330 IF (ILOAD .EQ. 1 .OR. ITYPE .EQ. 3 ) THEN
143: CALL STFVLO(X,N,NMAX,E,POISA,B, ITYPE,STOR,ISTOR,IERROR,NOSTIF,

144: & FLXSTO,FLEX,STIF)
145: ELSE
146: CALL STFHVM(X,N,NMAX,E,POIS,A,B,ITYPE,STOR,ISTOR,IERROR,NOSTIF,
147: & FLXSTO,FLEX,STIF)
148: ENDIF ..
149: IF (IERROR .NE. 1) GO TO 350
150: WRITE(ICRT,340)
151: 340 FORMAT(/,' A SINGULAR FLEXIBILITY MATRIX WAS',/,
152: &' OBTAINED. EXECUTION IS TERMINATED',/)
153: STOP ' '

154: 350 WRITE(ICRT,360)
155: 360 FORMAT(/,' Select a print option:', . '

156: & 1,' 1 = print flexibility matrix only',
157: & /,' 2 = print stiffness matrix only', A
158: & /,' 3 = print both matrices')
159: READ(IRD,*) NOPT
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160: IF (PANT) WRITE(ICRT,140) NOPT- iou: ...,..',

161: NN = N
162: IF (ILOAD .EQ. 2) NN = 3 * N
163: IF (NOPT .EQ. 2) GO TO 390
164: WRITE(ICRT,370)
165: 370 FORMAT(/,' The flexibility matrix elements on and',/,
166: & below the main diagonal are shown below:')
167: DO 380 I=I,NN
168: 380 WRITE(ICRT,420) (FLEX(I,K),K=1,I)
169: 390 IF (NOPT .EQ. 1) GO TO 430
170: WRITE(ICRT,400)
171: 400 FORMAT(/,' The stiffness matrix elements on and ',
172: & below the main diagonal are shown below:') .
173: DO 410 I=1,NN

174: 410 WRITE(ICRT,420) (STIF(I,K),K=1,I) *..

175: 420 FORMAT(1X,6(IPE11.3),/,12X,5(lPE11.3),/,12X,5(1PEI1.3),/,
176: & 12X,5(lPE11.3),/,12X,5(1PE11.3),/,12X,5(1PE1l.3),/,
177: & 12X,5(1PE1l.3),/,12X,5(lPEl1.3),/,12X,5(IPE1.3))
178: 430 WRITE(ICRT,440) ":"-
179: 440 FORMAT(/,' Problem analysis is completed',/)
180: STOP''
181: END
182:CSSSSSSSSS STFVLO
183: SUBROUTINE STFVLO(X,N,N1AX,E,POISA,B,ITYPE,STORISTOR,NOSTIF,
184: & IERROR,FLXSTO,FLEX,STIF)
185:C.. •Stiffness ma rix,and flexibility formulation for half-plane
186:C.. .or half-space subjected to vertical loads only.
187:C.."
188:C..E = oung,4 modulus
189:C...POIS = Poisson's ratio.
190:C...A, B = the loading dimension parameters •.
191:C...X(1),...,X(N) are the load application positions

192:C. ITYPE = 1,2, or 3 for plane strain, plane stress, or
193:C ... three-dimensional loading
194:C...NOSTIF = 1 to generate only flexibility matrix
195:C... 0 to generate both flexibility and stiffness matrix

196:C...FLEX = the flexibility matrix
197:C...STIF = the stiffness matrix obtained by inverting the flexibility
198:C... matrix when NOSTIF = 0
199:C...IERROR = 1 for a normal return
200:C... 2 for flexibility matrix that is singular

201:C...STOR = working storage of length N or more
202:C...ISTOR working storage of length N or more
203:C...STIF = the N by N roundation stiffness matrix which is the
204:C... desired subroutine output
205: IMPLICIT REAL*8 (A-H,O-Z) '
206: DIMENSION X(N),FLEX(NMAX,N),STIF(NMAX,N),STOR(l),ISTOR(1),
207: & FLXSTO(NMAX,N)
208: DATA ICRT/ 0 1
209: DO 20 I=I,N
210: XI = X(I)
211: DO 10 J=1,I
212: XIJ a XI - X(J)
213: F = FUNIT(XIJ,A,B,EPOIS,ITYPE)
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214: FLEX(I,J) W F
215: FLEX(JI) a F
216: FLXSTO(I,J) = F
217: 10 FLXSTO(J,I) z F
218: 20 CONTINUE
219:C...Invert the flexibility matrix to get the stiffness matrix
220: IERROR=O
221: CALL INVERT(FLXSTO,N,NMAX, ISTORSTOR, IFLAG,STIF)
222:C...Make certain stiffness matrix is symmetric
223: DO 40 Ili,N
224: DO 40 J=1,I
225: SIJ = O.5DO * (STIF(I,J) + STIF(J,I) )
226: STIF(I,J) a SIJ
227: 40 STIF(J,I) - SIJ
228:C...Check whether return from INVERT was normal
229: IF (IFLAG .EQ. 2) IERROR I
230: RETURN
231: END
232:CSSS$SS$ FUNIT
233: REALS8 FUNCTION FUNIT(XoA,B,E,POISITYPE)
234:C...This function returns the deflection at position X due -
235:C...to a unit distributed load at the origin. Parameter
236:C...ITYPE equals 1, 2, or 3 depending on whether a plane
237:C...strain, a plane stress, or a three-dimensional solution
238:C...is generated. E and POIS denote Young's modulus and
239:C...Poisson's ratio, respectively. In instances of plane
240:C...strain or plane stress, the unit load is distributed
241:C...over an area of width A and unit depth. The displace-
242:C...ment is adjusted to equal zero at X=B in the plan*
243:C...case. In the instance of three-dimensional loading,
244:C...the unit load is distributed over a rectangular area
245:C...of width A and depth B. The displacement at X=infinity
246:C...vanishes for the three-dimensional case.
247: IMPLICIT REAL*8 (A-H,O-Z)
248: DATA PI/ 3.14159265358979D0 /
249: IF (ITYPE .EQ. 3) GO TO 10
250:C.. .Plane stress
251: C a 2.DO / ( PI * E A
252:C... Plane strain
253: IF (ITYPE .EQ. 1) C = C * ( 1.DO - POIS*POIS )
254: FUNIT = -C * (F2D(DABS(X),.5DO0A)-F2D(B,.5DO*A))
255: RETURN
256:C ... Three dimensional case
257: 10 T2 = ( A + 2.DO * DABS(X) ) / B
258: TI = (-A + 2.DO DABS(X) )/ B
259: 20 FUNIT - (F3D(T2)-F3D(Tl)) * (1.DO-POIS$POIS) / (PIeE*A)
260: RETURN
261: END
262:CS$SSSSSSS F2D
263: REAL$8 FUNCTION F2D(U,V)
264: IMPLICIT REAL*8 (A-H,O-Z)
265: UA = DABS(U)
266: F2D • (UA+V) * DLOG(UA+V)
267: IF (UA .NE. V) F2D = F2D - (UA-V) * DLOG(DABS(UA-V))
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268: RETURN
. 269: END

270:CSSS$SSSSSS F3D
271: REAL*8 FUNCTION F3D(T)
272: IMPLICIT REAL*8 (A-H,O-Z)
273: F3D = DLOG(T+DSQRT(l.DO+T*T))
274: IF CT .EQ. O.DO) RETURN
275: S = l.DO / DABS(T)

* 276: F3D = F3D + T * DLOG(S+DSQRT(l.DO+S*S))
277: RETURN
278: END
279:CSSSSSSSSSS FACTR
280: SUBROUTINE FACTR (A,N,NMAX, IPIVOT,SCAL,IFLAG)
281:C...Perform triangular factorization of matrix A
282:C...using scaled row pivoting.
283:C...IFLAG = I means normal return
284:C... = 2 means matrix is singular
285: IMPLICIT REAL*8 (A-H,O-Z)

' 286: DIMENSION A(NMAX,N), IPIVOT(N), SCAL(N)
287: IFLAG = 1
288:C... Initialize IPIVOT and SCAL
289: DO 20 I=iN
290: IPIVOT(I) = I
291: ROWMAX = O.DO

" 292: DO 10 J=l,N
* 293: 10 ROWMAX = DMAX1(ROWMAX,DABS(A(I,J)))

294: IF (ROWMAX .EQ. O.DO) GO TO 50
295: 20 SCAL(I) = ROWMAX
296:C... Perform Gauss reduction
297: NMI = N - I
298: IF (NM1 EQ. 0) RETURN
299: DO 40 K=1,NMI
300: J = K
301: KP1 K + I
302: IP IPIVOT(K)

* 303: COLMAX = DABS(A(IP,K)) / SCAL(IP)
- 304: DO 30 I=KPI,N

305: IP = IPIVOT(I)
306: AWIKOV = DABS(A(IP,K)) / SCAL(IP)
307: IF (AWIKOV .LE. COLMAX) GO TO 30
308: COLMAX = AWIKOV
309: J = I
310: 30 CONTINUE
3-I: IF (COLMAX .EQ. O.DO) GO TO 50

.* 312:C
313: IPK = IPIVOT(J)
314: IPIVOT(J) = IPIVOT(K)
315: IPIVOT(K) = IPK
316: DO 40 "=KPI,N
317: IP = IPIVOT(I)\.
318: A(IP,K) = A(IP,K) / A(IPK,K)
319: RATIO = -A(IP,K)
320: DO 40 J=KPI,N
321: 40 A(IP,J) = RATIO * A(IPK,J) + A(IP,J)
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322: IF (A(IP,N) .EQ. O.DO) GO TO 50
323: RETURN
324: 50 IFLAG .2
325: RETURN
326: END
327:CSSSSSSSSS$ BAKSUB
328: SUBROUTINE BAKSUB (AN,NNAXB,IPIVOT,X)
329:C ...Solve simultaneous equations AX=B where matrix A has
330:C...been subjected to factorization by subroutine FACTR
331: IMPLICIT REAL*8 (A-H,O-Z)
332: DIMENSION A(NMAXN), B(N), IPIVOT(N), X(N)
333: IF (N .GT. 1) GO TO 10
334: X(1) = B(1) / A(1,1)
335: RETURN
336: 10 IP = IPIVOT(1)
337: X(1) = B(IP)
338: DO 30 K=2,N
339: IP = IPIVOT(K)
340: KM1 K - 1

- 341: SUM= O.DO
342: DO 20 J=1,KM1
343: 20 SUM - A(IP,J) * X(J) + SUM
344: 30 X(K) = B(IP) - SUM
345: X(N) = X(N) / A(IP,N)

" 346: K= N
347: DO 50 NP1MK=2,N
348: KP1 = K
349: K = K - i
350: IP i IPIVOT(K)
351: SUM = O.DO

* 352: DO 40 J=KP1,N
353: 40 SUM = A(IP,J) * X(J) + SUM
354: 50 X(K) = (X(K)-SUM) / A(IP,K) .
355: RETURN
356: END
357:C$S$SSSSSS INVERT
358: SUBROUTINE INVERT( A, N, NMAX, IPIVOT, SCAL, IFLAG, AINV )
359:C...IFLAG = 2 indicates singular matrix
360: IMPLICIT REAL*8 (A-H,O-Z)

*361: DIMENSION A(NMAX,1), AINV(NMAX,1), IPIVOT(1), SCAL(1)
362: CALL FACTR( A, N, NMAX, IPIVOT, SCAL, IFLAG )
363: IF( IFLAG .EQ. 2 ) RETURN
364: DO 10 J = 1, N

" 365: 10 SCAL(J) = O.ODO
366: DO 20 1 = 1, N
367: SCAL(I) = 1.ODO -.

368: CALL BAKSUB( A, N, NMAX, SCAL, IPIVOT, AINV(1,I)
369: SCAL(I) = O.ODO
370: 20 CONTINUE
371: RETURN
372: END
373:CSSSSSSSS$$ F
374: REAL*8 FUNCTION F( X, A )
375:C...Integral from 0 to X of LOG(ABS(X-A))-LOG(ABS(X+A))
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376: IMPLICIT REAL*8 (A-H.O-Z)

377: FF f O.DO
378: XMA = DABS(X) - A
379: XPA = DABS(X) + A
380: IF (XMA .EQ. 0.DO) GO TO 10
381: FF = XMA * DLOG(DABS(XMA))
382: 10 FF = FF - XPA * DLOG(XPA) %

383: F = FF
384: RETURN
385: END
386:CSSSSSSSSSS STEP
387: REAL*8 FUNCTION STEP( X, A
388:C. .Unit step function.
389: IMPLICIT REAL*8 (A-H,O-Z)
390: STEP = O.DO
391: IF (X .GE. A) STEP = 1.DO
392: RETURN
393: END
394 :CSSSSSSSSSS RAMP
395: REAL*8 FUNCTION RAMP( X , A )
396:C... Linearly varying ramp load.
397: IMPLICIT REAL*8 (A-HO-Z)
398: RAMP = O.DO
399: IF (X .GE. A) RAMP = X - A
400: RETURN
401: END
402:CS$$S$$$$S$ R
403: REAL*8 FUNCTION R( X, A
404:C...Derivative of F(X,A)
405: IMPLICIT REAL*8 (A-H,O-Z)
406: DATA ICRT / 0 /
407: XMA = DABS(X-A)
408: IF (XMA EQ. O.DO) GO TO 10
409: R = DLOG(XMA)
410: XPA = DABS(X+A)
411: IF (XPA .EQ. O.DO) GO TO 10
412: R = R - DLOG(XPA)
413: RETURN
414: 10 WRITE( ICRT, 20 )
415: 20 FORMAT( /, ' ARGUMENT ERROR IN FUNCTION RAMP', /
416: STOP
417: END
418:C$SS$$S$$S S
419: REAL*8 FUNCTION S( X, A )
420:C... Second derivative of F(X,A) --

421: IMPLICIT REAL*8 (A-HO-Z) .. _
422: DATA ICRT / 0 /
423: IF (DABS(X) .NE. DABS(A)) GO TO 20
424: WRITE( ICRT, 10 )
425: 10 FORMAT( / ' ARGUMENT ERROR IN FUNCTION S', / ) A"-. --
426: STOP ' '.*'.
427: 20 S = 2.DO A / ( X X - A A )
428: RETURN
429: END
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430:C$$$$$S$ G-
431: REAL*8 FUNCTION G( X, A )
432:C...Integral of H(X,A)
433: IMPLICIT REAL*8 (A-H,O-Z)
434: G = -A
435: IF (X .GT. -A) G - X
436: IF (X .GT. A) G a A
437: RETURN
438: END
439:C$S$$$$$$$ H
440: REAL*8 FUNCTION H( X, A )
441:C. ,Function equals 1 between -A and +A and equals zero otherwise.

442: IMPLICIT REAL*8 (A-HO-Z)
443: H = O.DO
444: IF (DABS(X) LE. A) H = l.DO
445: RETURN
446: END
447 :C$$$$$$$$$$ STFHVM
448: SUBROUTINE STFHVM(X,N,N3MAXE,POIS,WIDTH,DFIX,ITYP,STORISTOR,-
449: & IERROR,NOSTIF,FLXSTO,FLEX,STIF)
450:C...This subroutine generates flexibility and stiffness matrices for
451:C...a half plane subjected to horizontal loads, vertical loads, and
452:C...couples applied at a selected set of coordinates on the surface.
453:C ...
454:C...This routine calls the following routines: F, STEP, RAMP, R, S,
455:C...G, H, FACTR, BAKSUB, INVERT
456: IMPLICIT REAL*8 (A-H,O-Z)
457: DIMENSION X(N), FLEX(N3MAX,N3MAX), STOR(1), ISTOR(l),
458: & FLXSTO(N3MAX,N3MAX), STIF(N3MAX,N3MAX)
459: DATA PI / 3.14159265358979DO / ICRT/ 0 /
460: AH - 0.5DO WIDTH
461: FD = F(DFIX,AH)
462: IF (ITYP .EQ. 2) GO TO 10
463:C.. .Plane strain
464: CO = ( l.DO - POIS * 2 ) / ( PI * AH * E )
465: EO = ( l.DO + POIS ) ( 1.DO - 2.DO * POIS ) / ( 2.DO S AH * E )
466: GO TO 20.-
467:C... Plane stress
468: 10 CO = l.DO / ( E * PI * AH ) r.p
469: EO = ( 1.DO - POIS ) / ( 2.DO * E AH )
470: 20 CONTINUE
471: DO 40 1 = 1, N
472: DO 30 J = 1, N
473: XIJ = X(I) - X(J)
474: FIJ - CO * ( F(XIJ,AH) - FD )
475: GIJ = EO * G( XIJ, AH ) hAi*.

476: HIJ = EO * H( XIJ, AH)
477: RIJ m CO * R( XIJ, AH
478: SIJ - EO * S( XIJ, AH )-'
479: IR a 3 I - 2
480: JC = 3 J - 2
481: FLEX(IR,JC) - FIJ
482: FLEX(IR+I,JC) = GIJ
483: FLEX(IR+2,JC) = HIJ
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484: FLEX(IR,JC+l) = -IJ
485: FLEX(IR+1,JC-1) = FIJ
486: FLEX(IR+2,JC+I) = RIJ
487: FLEX(IR,JC+2) = HIJ
488: FLEX(IR+I,JC+2) = -RIJ
489: FLEX(IR+2,JC+2) = -SIJ
490: 30 CONTINUE
491: 40 CONTINUE
492: N3 = 3 * N
493: DO 50 I=1,N3
494: DO 50 J=l,I
495: FSTO = FLEX(I,J)
496: FLXSTO(IJ) = FSTO" -
497: 50 FLXSTO(J,I) = FSTO 416,

498:C...Invert the flexibility matrix if stiffness is required
499: IF (NOSTIF .EQ. 1) RETURN
500: IERROR = 0
501: CALL INVERT(FLXSTO,N3,N3MAX,ISTOR,STOR,IFLAG,STIF)
502:C... Make sure stiffness matrix is symmetric

503: DO 60 I=1,N3
504: DO 60 J=1,I
505: SIJ = 0.5DO * (STIF(I,J) + STIF(JI)
506: STIF(I,J) = SIJ
507: 60 STIF(J,I) = SIJ
508:C... Check whether return form INVERT was normal
509: IF (IFLAG .EQ. 2) IERROR-- 1
510: RETURN .- ,

511: END
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